Lesson 9-2

The Reciprocal Function Family

We all know what the reciprocal of a number is: one over the number, the reciprocal of a is $\frac{1}{a}$, the reciprocal of 5 is $\frac{1}{5}$. Well, functions like inverse variations, are in a reciprocal form, hence we call these functions **reciprocal functions**. Generally speaking we will see the **x** variable in the denominator.

Parent function $f(x) = \frac{1}{x}$.

- General form of the reciprocal function is: $f(x) = \frac{a}{x-h} + k$ (note $x \ne h$, as the denominator will be zero or f(x) is undefined.
- Here again are h and k which translate the parent function.

Graphing

Graph $y = \frac{8}{x}$

Identify vertical and horizontal asymptotes. Domain and Range

- Make a table of values that include both positive and negative values
- 2. Graph the points and sketch the curve
- Asymptotes will be at domain restrictions, that is where x cannot be equal to zero is a vertical asymptote.

No matter how big or small x becomes, y will never be equal to zero, hence, the horizontal asymptote.

Asymptotes

Often we can see on the graph what the asymptotes are, but how can we look at the equation and determine the asymptotes? Let's take a look at that general form of a reciprocal function; the "h and k" are significant:

$$y = \frac{a}{x - h} + k$$

- The denominator cannot be equal to zero, so set it to zero and solve for x.
- At x = h we have a vertical asymptote
- ightharpoonup y = k a horizontal asymptote.
- > So by putting the function into our general form, we can pluck off the asymptotes.

Sketch the graph and identify the asymptotes

Write an equation for the translation of $y = \frac{7}{x}$

