Chapter 10 Review ALL PROBLEMS MUST BE COMPLETED ON SEPARATE PAPER OTHERWISE; THIS REVIEW SHEET WILL NOT BE GRADED. SHOW ALL WORK FOR CREDIT. REVIEW IS DUE ON TEST DAY.

Find the equation of the parabola described.

1) Focus at (25, 0); directrix the line x = -25 2) Focus at (3, 0); vertex at (0, 0)

3) Vertex at (0, 0); axis of symmetry the x-axis; containing the point (9, 8)

Find the vertex, focus, and directrix of the parabola. Graph the equation. 4) $x^2 = -12y$ 5) $y^2 = 18x$

Find the foci and vertices of the ellipse.

6) $\frac{x^2}{49} + \frac{y^2}{25} = 1$ 7) $\frac{x^2}{4} + \frac{y^2}{81} = 1$

Find an equation for the ellipse.

8) Center at (0, 0); focus at (- 5, 0); vertex at (6, 0)

Solve the problem.

9) A reflecting telescope contains a mirror shaped like a paraboloid of revolution. If the mirror is 20 inches across at its opening and is 4 feet deep, where will the light be concentrated?

Find the foci and vertices of the ellipse.

10)
$$\frac{x^2}{49} + \frac{y^2}{36} = 1$$

Graph the ellipse and locate the foci.

11)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 12) $\frac{x^2}{4} + \frac{y^2}{16} = 1$

Solve the problem.

13) A hall 130 feet in length was designed as a whispering gallery. If the ceiling is 25 feet high at the center, how far from the center are the foci located? **Find an equation for the hyperbola described.**

14) Vertices at (0, ±10); asymptotes at y = $\pm \frac{5}{3}x$

SKIP #15 AND #16

Graph the curve whose parametric equations are given.

17) x = 2t - 1, y = $t^2 + 2$; $-4 \le t \le 4$

Find a rectangular equation for the plane curve defined by the parametric equations and state the domain. 18) x = 3t, y = t + 1; $-2 \le t \le 3$ 19) $x = 5 \sin t$, $y = 5 \cos t$; $0 \le t \le 2\pi$