ALL PROBLEMS MUST BE COMPLETED ON SEPARATE PAPER OTHERWISE; THIS REVIEW SHEET WILL NOT BE GRADED. SHOW ALL WORK FOR CREDIT. REVIEW IS DUE ON TEST DAY.

Find the equation of the parabola described.

1) Focus at (25,0); directrix the line $x=-25$
2) Focus at (3,0); vertex at $(0,0)$
3) Vertex at $(0,0)$; axis of symmetry the x-axis; containing the point $(9,8)$

Find the vertex, focus, and directrix of the parabola. Graph the equation.
4) $x^{2}=-12 y$
5) $y^{2}=18 x$

Find the foci and vertices of the ellipse.
6) $\frac{x^{2}}{49}+\frac{y^{2}}{25}=1$
7) $\frac{x^{2}}{4}+\frac{y^{2}}{81}=1$

Find an equation for the ellipse.
8) Center at $(0,0)$; focus at $(-5,0)$; vertex at $(6,0)$

Solve the problem.
9) A reflecting telescope contains a mirror shaped like a paraboloid of revolution. If the mirror is 20 inches across at its opening and is 4 feet deep, where will the light be concentrated?

Find the foci and vertices of the ellipse.
10) $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$

Graph the ellipse and locate the foci.
11) $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
12) $\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$

Solve the problem.
13) A hall 130 feet in length was designed as a whispering gallery. If the ceiling is 25 feet high at the center, how far from the center are the foci located? Find an equation for the hyperbola described.
14) Vertices at $(0, \pm 10)$; asymptotes at $y= \pm \frac{5}{3} x$

SKIP \#15 AND \#16
Graph the curve whose parametric equations are given.
17) $x=2 t-1, y=t^{2}+2 ;-4 \leq t \leq 4$

Find a rectangular equation for the plane curve defined by the parametric equations and state the domain.
18) $x=3 t, y=t+1 ;-2 \leq t \leq 3$
19) $\mathrm{x}=5 \sin \mathrm{t}, \mathrm{y}=5 \cos \mathrm{t} ; 0 \leq \mathrm{t} \leq 2 \pi$

