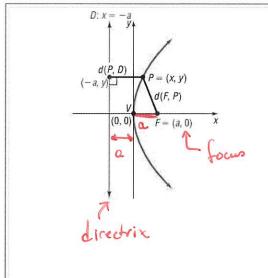

Precalculus Lesson 10.2: The Parabola Mrs. Snow, Instructor

I will be able to graph a parabola with the vertex at the origin and solve real world examples involving parabolas


We will: Analyze parabolas with a vertex at the origin and solve application problems involving parabolas

Conic sections are curves that result from the intersection of a cone and a plane. We will be looking at all four curves: circle, parabola, ellipse and the hyperbola.

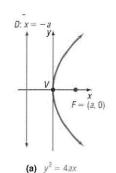
Parabola: A collection, or locus, of all points P in the plane that are the same distance from a fixed point as they are from a fixed line. The point F is the **focus** and the line is its **directrix**.

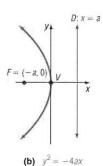
these distances are equal:

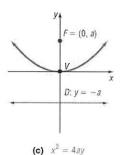
$$d(F,P) = d(P,D)$$

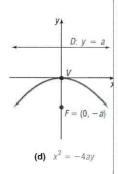
For the parabola that opens along the x-axis:

$$y^2 = 4ax$$

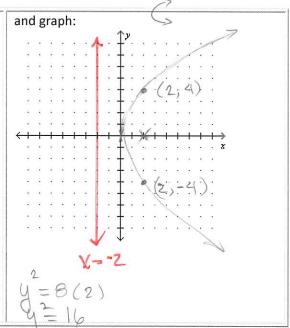

where:


vertex at (0,0), focus at (a,0),

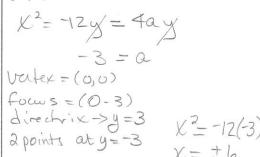

"a "is the distance from the vertex to the focus of a parabola and distance from the vertex to the directrix


A parabola will open onto the positive or negative x- or y-axes:

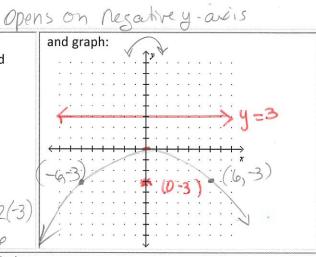
sitive x-ax
gative x-
sitive y-ax
gative y-



Analyze the equation: $y^2 = 8x$ positive of axis analyze??? (find the vertex, focus and directrix and graph)

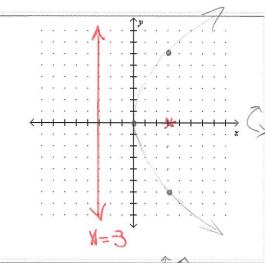

$$y^2 = 8x = 4ax$$

 $8 = 4a$


directrix X=-Z2 points: we the x-element y=16here, 2, to find points $y=\pm 4$

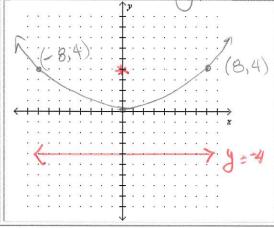
on the parabola.

Analyze the equation: $x^2 = -12y$ (find the vertex, focus and directrix and graph)



Graphing and Finding Equations of Parabolas

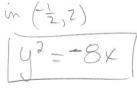
Find an equation of a parabola with a vertex at (0,0) and a focus at (3,0). Graph the


equation forus (3,0)
$$\Rightarrow \alpha=3$$

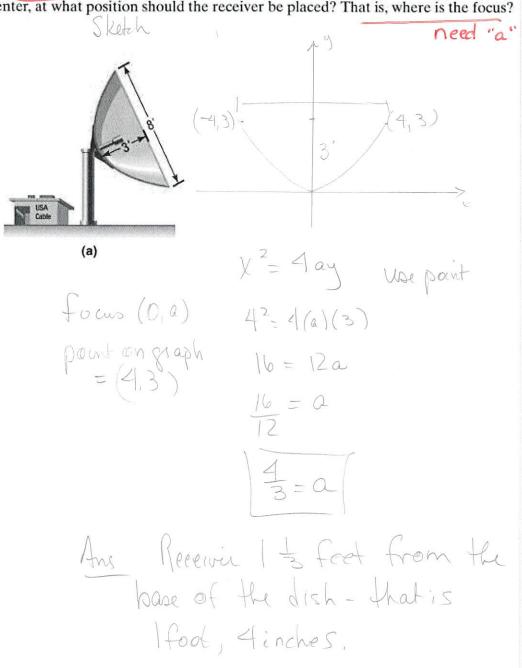
 $y^2 = 4ax$
 $y^2 = 4(3)x = 7$
 $y^2 = 12x$
2 points at $x = 3$ | directrix
 $y^2 = 12(3)$
 $y^2 = 36$

Find an equation of a parabola with a focus at (0,4) and a and directrix line y = -4Graph the equation

$$x^{2} = 4ay$$
 $x^{2} = 4(4)y = > |x^{2} = 16y|$


2 painte at $y = 4$
 $|x^{2} = 16(4)|$
 $|x^{2} = 16(4)|$
 $|x^{2} = 16(4)|$
 $|x^{2} = 16(4)|$

Find the equation of the parabola with vertex at (0,0) if its axis of symmetry is the x-axis and its graph contain the point $\left(-\frac{1}{2},2\right)$


nd its graph contain. well

$$y^{2}=4ax$$
 plug in $(\frac{1}{2}, 2)$
 $2^{2}=4(a)(\frac{1}{2})$
 $4=-2a$
 $[-2=a]$
 $y^{2}=-8x$

A satellite dish is shaped like a paraboloid of revolution. The signals that emanate from a satellite strike the surface of the dish and are reflected to a single point, where the receiver is located. If the dish is 8 feet across at its opening and 3 feet deep at its center, at what position should the receiver be placed? That is, where is the focus?

