Chapter 2 Test Review: TO RECEIVE CREDIT, ALL PROBLEMS MUST BE DONE ON SEPARATE PAPER, SHOWING ALL WORK, AND TURNED AT THE BEGINNING OF CLASS ON TEST DAY.

- 1) Determine whether the equation defines y as a function of x.
- a) $y = \frac{1}{x}$ b) $y^2 = 4 - x^2$ c) $y = \frac{4x - 1}{x}$ d) $8x + x^2 - 59 = y$ e) $y^2 + x = 4$
- 2) Find the value for the function.
- a) Find f(4) when $f(x) = x^2 + 5x 1$ b) Find f(2) when $f(x) = \frac{x^2 - 3}{x - 1}$ c) Find f(2x) when $f(x) = \sqrt{7x^2 - 3x}$ d) Find f(x + h) when $f(x) = 3x^2 - 4x - 4$ e) Find f(x - 2) when $f(x) = 3x^2 + 5x + 3$

3) The function $P(d) = 1 + \frac{d}{33}$ gives the pressure, in atmospheres (atm), at a depth d feet in the sea. Find the pressure at 55 feet.

- 4) Find the domain of the function. Answer in Interval notation.
- a) $f(x) = \frac{x}{x^{2}+5}$ b) $h(x) = \frac{x-3}{x^{3}-25x}$ c) $f(x) = \sqrt{10-x}$ d) $g(x) = \frac{x}{\sqrt{x+7}}$
- 5) For the given functions f and g, find the requested function and state its domain. Answer in Interval notation. a) f(x) = 9 - 6x; g(x) = -2x + 6 Find f + e) $f(x) = 2x^3 - 1$, $g(x) = 4x^2 - 3$ Find f · g. b) f(x) = 6x - 7; g(x) = 9x - 8 Find f - g. c) f(x) = 2x - 4; g(x) = 9x - 2 Find f · g. d) f(x) = 5x + 1; g(x) = 6x - 5 Find $\frac{f}{g}$. c) f(x) = 5x + 1; g(x) = 6x - 5 Find $\frac{f}{g}$. b) f(x) = 3x + 5; g(x) = 4x - 1 Find $\frac{f}{g}$.

6) Find and simplify the difference quotient of f(x), $\frac{f(x+h)-f(x)}{h}$ $h \neq 0$, for the following functions. a) f(x) = 7x + 8 b) $f(x) = 2x^2$ c) f(x) = 5x + 1

- 7) The graph of a function f is given. Use the graph to answer the question. Use the graph of f given below to find a) f(20).
 - b) Is f(-50) positive or negative?
 - c) What is the domain of f?
 - d) For what numbers is $f(x) \le 0$?

8) The graph of a function is given. Decide whether it is even, odd, or neither

9 The graph of a function is given. Determine whether the function is increasing, decreasing, or constant on the given interval.

a) (-3, 0.5) b) (0.5, 3.5) c) (3.5, 6)

10) Find the numbers, if any, at which f has a local maximum and/or a local minimum.

What are the local maxima and minima?

11) For the graph of the function y = f(x), find the absolute maximum and the absolute minimum, if it exists.

12) Find the average rate of change for the function between the given values. $f(x) = x^2 + 7x$; from 1 to 5

13) Graph the function.

a)
$$f(x) = \begin{cases} x+1 & -7 \le x < 5 \\ -7 & if \quad x = 5 \\ -x+8 & if \quad x > 5 \end{cases}$$
 b)
$$f(x) = int \quad (x+1)$$
 c)
$$f(x) = \begin{cases} 1 & if \quad x < 0 \\ \sqrt{x} & if \quad 0 \le x \le 4 \\ x-5 & if \quad 4 < x \end{cases}$$

- 14) Write the equation of a function that has the given characteristics.
- **a)** The graph of $y = x^2$, shifted 6 units upward
- **b)** The graph of y = |x|, shifted 8 units left
- c) The graph of $y = \sqrt{x}$, shifted 7 units to the right

15) Graph the function by starting with the graph of the parent function and then using the techniques of shifting, compressing, stretching, and/or reflecting.

a) $f(x) = (x + 3)^2 + 3$ b) $f(x) = 2x^2$ c) $f(x) = 3(x + 1)^2 - 2$ 16) Use the graph of $f(x) = x^2$ to sketch the graph of the indicated equation. $y = -\frac{1}{3}(x + 5)^2 + 2$