See Figure 58.

Figure 58

The domain of f is $(-\infty, 1]$ and its range is $[2, \infty)$.

Now Work PROBLEM 61

2.5 Assess Your Understanding 69

Concepts and Vocabulary

- Suppose that the graph of a function f is known. Then the graph of y = f(x - 2) may be obtained by a(n)shift of the graph of f to the ____ a distance of 2 units. Suppose that the graph of a function f is known. Then the
 - graph of y = f(-x) may be obtained by a reflection about the _____-axis of the graph of the function y = f(x).
- Suppose that the graph of a function g is known. The graph of y = g(x) + 2 may be obtained by a shift of the graph of g ___ a distance of 2 units.
- True or False The graph of y = -f(x) is the reflection about the x-axis of the graph of y = f(x).
- **True or False** To obtain the graph of $f(x) = \sqrt{x+2}$, shift the graph of $y = \sqrt{x}$ horizontally to the right 2 units.
- **6.** True or False To obtain the graph of $f(x) = x^3 + 5$, shift the graph of $y = x^3$ vertically up 5 units. True

Skill Building

In Problems 7–18, match each graph to one of the following functions:

A.
$$y = x^2 + 2$$

B.
$$y = -x^2 + 2$$

C.
$$y = |x| + 2$$

D.
$$y = -|x| + 2$$

E.
$$y = (x - 2)^2$$

F.
$$y = -(x+2)^2$$

G.
$$y = |x - 2|$$

H.
$$y = -|x + 2|$$

I.
$$y = (x^2)^{-1}$$

$$J. \quad y = -2x^2$$

$$K. y = 2|x|$$

L.
$$y = -2|x|$$

10.

14.

H

L

-3

E

A

13.

D

C

In Problems 19–26, write the function whose graph is the graph of $y = x^3$, but is:

- Shifted to the right 4 units
- Shifted up 4 units
- 23. Reflected about the y-axis
- 25. Vertically stretched by a factor of 4 $y = 4x^3$
- **20.** Shifted to the left 4 units $y = (x + 4)^3$
- 22. Shifted down 4 units $y = x^3 4$
- **24.** Reflected about the x-axis $y = -x^3$
- *26. Horizontally stretched by a factor of 4

In Problems 27–30, find the function that is finally graphed after each of the following transformations is applied to the graph of $y = \sqrt{x}$ in the order stated.

- (2) Reflect about the x-axis
- (3) Reflect about the y-axis
- (1) Reflect about the x-axis
 - (2) Shift up 2 units
 - (3) Shift left 3 units
- 31. If (3,6) is a point on the graph of y = f(x), which of the following points must be on the graph of y = -f(x)? (c)
 - (a) (6,3)

out

shift

lse

t the

3 X

- (b) (6, -3)
- (c) (3, -6)
- (d) (-3,6)
- 33. If (1,3) is a point on the graph of y = f(x), which of the following points must be on the graph of y = 2f(x)? (c)
 - (a) $\left(1, \frac{3}{2}\right)$

- (d) $\left(\frac{1}{2},3\right)$
- 35. Suppose that the x-intercepts of the graph of y = f(x) are -5 and 3.
 - *(a) What are the x-intercepts of the graph of y = f(x+2)?
 - *(b) What are the x-intercepts of the graph of y = f(x-2)?
 - *(c) What are the x-intercepts of the graph of y = 4f(x)?
 - *(d) What are the x-intercepts of the graph of y = f(-x)?
- 37. Suppose that the function y = f(x) is increasing on the interval (-1,5).
 - (a) Over what interval is the graph of y = f(x + 2)increasing? (-3,3)
 - (b) Over what interval is the graph of y = f(x 5)increasing? (4, 10)
 - *(c) What can be said about the graph of y = -f(x)?
 - *(d) What can be said about the graph of y = f(-x)?

- 28. (1) Reflect about the x-axis
 - (2) Shift right 3 units
 - (3) Shift down 2 units $y = -\sqrt{x-3} 2$
- 30. (1) Shift up 2 units
 - (2) Reflect about the y-axis
 - (3) Shift left 3 units $y = \sqrt{-(x+3)} + 2 = \sqrt{-x-3} + 2$
- **32.** If (3,6) is a point on the graph of y = f(x), which of the following points must be on the graph of y = f(-x)? (d)
 - (a) (6,3)
- (b) (6, -3)
- (c) (3, -6)
- (d) (-3,6)
- **34.** If (4,2) is a point on the graph of y = f(x), which of the following points must be on the graph of y = f(2x)? (c)
 - (a) (4,1)
- (b) (8,2)
- (c) (2,2)
- (d) (4,4)
- 36. Suppose that the x-intercepts of the graph of y = f(x) are -8 and 1.
 - *(a) What are the x-intercepts of the graph of y = f(x+4)?
 - *(b) What are the x-intercepts of the graph of y = f(x 3)?
 - *(c) What are the x-intercepts of the graph of y = 2f(x)?
 - *(d) What are the x-intercepts of the graph of y = f(-x)?
- 38. Suppose that the function y = f(x) is decreasing on the interval (-2,7).
 - (a) Over what interval is the graph of y = f(x + 2)(-4,5)decreasing?
 - (b) Over what interval is the graph of y = f(x 5)decreasing? (3, 12)
 - *(c) What can be said about the graph of y = -f(x)?
 - *(d) What can be said about the graph of y = f(-x)?

In Problems 39-68, graph each function using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function (for example, $y = x^2$) and show all stages. Be sure to show at least three key points. Find the domain and the range of each function. Verify your results using a graphing utility.

$$\frac{39}{10} f(x) = x^2 - 1$$

*40.
$$f(x) = x^2 + 4$$

*43. $h(x) = \sqrt{x-2}$

*41.
$$g(x) = x^3 + 1$$

*44. $h(x) = \sqrt{x+1}$

^{*42.} $g(x) = x^3 - 1$ *Due to space restrictions, answers to these exercises may be found in the Answers in the back of the book.

*45.
$$f(x) = (x-1)^3 + 2$$

*48.
$$g(x) = \frac{1}{2}\sqrt{x}$$

$$^*51. \ f(x) = -\sqrt[2]{x}$$

*54.
$$g(x) = \frac{1}{-x}$$

*57.
$$f(x) = 2(x+1)^2 - 3$$

*60.
$$g(x) = 3|x + 1| - 3$$

*63.
$$f(x) = -(x+1)^3 - 1$$

*66.
$$g(x) = 4\sqrt{2-x}$$

*46.
$$f(x) = (x+2)^3 - 3$$

*49.
$$h(x) = \frac{1}{2x}$$

*52.
$$f(x) = -\sqrt{x}$$

*55.
$$h(x) = -x^3 + 2$$

*58.
$$f(x) = 3(x-2)^2 + 1$$

*64.
$$h(x) = \sqrt{-x} - 2$$

*64. $f(x) = -4\sqrt{x} - 1$

*64.
$$f(x) = -4\sqrt{x-1}$$

*67.
$$h(x) = 2 \text{ int } (x - 1)$$

*47.
$$g(x) = 4\sqrt{x}$$

*50.
$$h(x) = \sqrt[3]{2x}$$

*53.
$$g(x) = \sqrt[3]{-x}$$

*56.
$$h(x) = \frac{1}{-x} + 2$$

*59.
$$g(x) = 2\sqrt{x-2} + 1$$

*62.
$$h(x) = \frac{4}{x} + 2$$

*65.
$$g(x) = 2|1 - x|$$

*68.
$$h(x) = int(-x)$$

In Problems 69-72, the graph of a function f is illustrated. Use the graph of f as the first step toward graphing each of the following functions:

$$(Q(a))F(x) = f(x) + 3$$

(b)
$$G(x) = f(x+2)$$
 (c) $P(x) = -f(x)$

$$(c) P(x) = -f(x)$$

(d)
$$H(x) = f(x+1) - 2$$

*72.

Mixed Practice

- **73.** *(a) Using a graphing utility, graph $f(x) = x^3 9x$ for -4 < x < 4.
 - (b) Find the x-intercepts of the graph of f.
 - *(c) Approximate any local maxima and local minima.
 - *(d) Determine where f is increasing and where it is decreasing.
 - *(e) Without using a graphing utility, repeat parts (b)-(d) for y = f(x + 2).
 - *(f) Without using a graphing utility, repeat parts (b)-(d) for y = 2f(x).
 - *(g) Without using a graphing utility, repeat parts (b)-(d) for y = f(-x).

- **74.** *(a) Using a graphing utility, graph $f(x) = x^3 4x$ for -3 < x < 3.
 - (b) Find the x-intercepts of the graph of f. -2, 0, 2
 - *(c) Approximate any local maxima and local minima.
 - *(d) Determine where f is increasing and where it is decreasing.
 - *(e) Without using a graphing utility, repeat parts (b)-(d) for y = f(x - 4).
 - *(f) Without using a graphing utility, repeat parts (b)-(d) for y = f(2x).
 - *(g) Without using a graphing utility, repeat parts (b)-(d) for y = -f(x).

In Problems 75-82, complete the square of each quadratic expression. Then graph each function using the technique of shifting. (If necessary, refer to Appendix A, Section A.3 to review completing the square.)

*75.
$$f(x) = x^2 + 2x$$

*76.
$$f(x) = x^2 - 6x$$

*77.
$$f(x) = x^2 - 8x + 1$$

*78.
$$f(x) = x^2 + 4x + 2$$

*79.
$$f(x) = 2x^2 - 12x + 19$$

*80.
$$f(x) = 3x^2 + 6x +$$

*81.
$$f(x) = -3x^2 - 12x - 1$$

*82.
$$f(x) = -2x^2 - 12x - 1$$

Applications and Extensions

- *83. The equation $y = (x c)^2$ defines a family of parabolas, one parabola for each value of c. On one set of coordinate
- axes, graph the members of the family for c = 0, c = 3, and