ALL PROBLEMS MUST BE DONE ON SEPARATE PAPER OTHERWISE; THE REVIEW WILL NOT BE GRADED. SHOW ALL WORK FOR CREDIT. REVIEW IS DUE ON TEST DAY.

Evaluate the factorial expression.

1) $\frac{8!}{6!}$

Write out the first five terms of the sequence.
2) $\left\{s_{n}\right\}=\{2(3 n-1)\}$
3) $\left\{c_{n}\right\}=\left\{\frac{4^{n}}{n}\right\}$

The given pattern continues. Write down the nth term of the sequence $\left\{{ }^{a_{n}}\right\}$ suggested by the pattern.
4) $-1,1,3,5,7, \ldots$
5) $4,-8,12,-16, \ldots$

The sequence is defined recursively. Write the first four terms.
6) $a_{1}=5 ; \quad a_{n}=a_{n-1} \quad-2$

Write out the sum.
7) $\sum_{k=1}^{n}(k+2)$

Express the sum using summation notation.
8) $3^{2}+4^{2}+5^{2}+\cdots+10^{2}$

Find the sum of the sequence.
9) a)
b) $\sum_{k=1}^{4} 3$

An arithmetic sequence is given. Find the common difference and write out the first four terms.
10) $\left\{s_{n}\right\}=\{9-5 n\}$

Find the nth term and the $8^{\text {th }}$ term of the arithmetic sequence $\left\{a_{n}\right\}$ whose initial term, a, and common difference, d, are given.
11) $a_{1}=84 ; \quad d=-10$

Find the indicated term of the arithmetic sequence.
12) The twenty-third term of the arithmetic sequence $0,10,20, \ldots$

Find the first term, the common difference, and give a recursive formula for the arithmetic sequence.
13) 7 th term is $43 ; 15$ th term is 3

Find the sum.
14) $1+2+3+\ldots+264$
15) $\sum_{n=1}^{5}(2 n-1)$

A geometric sequence is given. Find the common ratio and write out the first four terms.
16) a) $\left\{s_{n}\right\}=\left\{3^{n}\right\}$
b) $\left\{\mathrm{t}_{\mathrm{n}}\right\}=\left\{\left(\frac{3}{5}\right)^{n}\right\}$

Determine whether the given sequence is arithmetic, geometric, or neither. If the sequence is arithmetic, find the common difference; if it is geometric, find the common ratio.
17) $3,-9,27,-81,243, \ldots$

Find the fifth term and the nth term of the geometric sequence whose initial term, a, and common ratio, r, are given.
18) $a=4 ; \quad r=5$

Find the indicated term of the geometric sequence.
19) 8 th term of $1,2,4, \ldots$

Find the nth term $\left\{a_{n}\right\}$ of the geometric sequence. When given, r is the common ratio.
20) $7,14,28,56,112, \ldots$

Find the fifth term and the nth term of the geometric sequence whose initial term, a, and common ratio, r, are given.
21) $a_{4}=81 ; \quad r=3$

Find the sum of the geometric sequence. Round answer to two decimal places, if necessary.
22)
$\sum_{k=1}^{5} 2(3)^{k}$

Determine whether the infinite geometric series converges or diverges. If it converges, find its sum.
23) $3+1+\frac{1}{3}+\frac{1}{9}+\ldots$

Evaluate the expression.
24)
a) $\binom{5}{3}$
b) $\binom{10}{8}$

Expand the expression using the Binomial Theorem.
24)
a) $(5 x-2)^{4}$
b) $(4 x+2)^{5}$

Use the Binomial Theorem to find the indicated coefficient or term.
24) a) The 3rd term in the expansion of $(4 x+9)^{3}$
b) The 5 th term in the expansion of $(3 x+5)^{5}$

Write the partial fraction decomposition of the rational expression.
27) a) $\frac{-3 x^{2}-11 x-11}{(x+2)(x+1)^{2}}$ b) $\frac{2 x^{2}-x+4}{x^{3}+4 x} \quad$ c) $\frac{x}{x^{2}-7 x+12}$

