1. The radius r and A of a circle are related by the equation $A=\pi r^{2}$. Write an equation that relates $\frac{d A}{d t}$ to $\frac{d r}{d t}$.
2. The radius r and surface area S of a sphere are related by the equation $S=4 \pi r^{2}$. Write an equation that relates $\frac{d S}{d t}$ to $\frac{d r}{d t}$.
3. When a circular plate of metal is heated in an oven, its radius increases at the rate of $0.01 \mathrm{~cm} / \mathrm{sec}$. At what rate is the plate's area increasing when the radius is 50 cm ?
4. The length ℓ of a rectangle is decreasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$ while the width w is increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. When $l=12 \mathrm{~cm}$ and $\mathrm{w}=5 \mathrm{~cm}$, find the rates of change of
a) the area
b) the perimeter, and
c) the length of a diagonal of the rectangle.
5. A spherical balloon is inflated with helium at the rate of $100 \pi f t^{3} / \mathrm{min}$.
a) How fast is the balloon's radius increasing at the instant the radius is 5 ft ?
b). How fast is the surface area increasing at that instant?
6. An airplane is flying at an altitude of 7 miles and passes directly over a radar antenna as shown in the figure. When the plane is 10 miles from the antenna $(s=10)$, the radar detects that the distance s is changing at the rate of 300 mph . What is the speed of the airplane at that moment?

7. Mack flies a kite at a height of 300 feet, the wind carrying the kite horizontally away at a rate of 25 $\mathrm{ft} / \mathrm{sec}$. How fast must she let out the string when the kite is 500 feet away from her?
8. The volume of a right circular cone of radius r and height r is given by $V=\frac{\pi}{3} r^{3}$. How fast is the volume changing with respect to changes in r when the radius is equal to 2 feet?
9. A ladder 10 feet long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of $1 \mathrm{ft} / \mathrm{sec}$, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 feet from the wall?
10. A tank is in the form of an inverted cone 8 meters across the top and 6 meters deep. Water is flowing into the tank at the rate of $10 \mathrm{~m}^{3} / \mathrm{h}$. At what rate is the depth of the water in the tank changing when it is 5 meters deep?
11. The motion of a particle is given by $s=t^{3}-6 t^{2}+9 t \quad(t \geq 0)$, where s is measured in meters and t in seconds. A) Find the velocity and acceleration of the particle at time t. B) Find when the particle is moving to the left and to the right. C) Find the positions of the particle when the particle is instantaneously at rest. D) Indicate the motion of the particle in a diagram.

Find $d y / d x$.
12. $x^{3}+y^{3}=8$
13. $x^{3} y^{3}-y=x$
14. $2 \sin \mathrm{x} \cos \mathrm{y}=1$

Find $d y / d x$ and evaluate at given point.
15. $\mathrm{xy}=4,(-4,-1)$
16. $\mathrm{x}^{3}+\mathrm{y}^{3}=4 \mathrm{xy}+1,(2,1)$

