

Calculus Lesson 3.6: A Summary of Curve Sketching Mrs. Snow, Instructor

In precalclulus we analyzed and sketched graphs of functions. While we determined x and yintercepts, asymptotes, and the function's behavior as it approached the asymptotes, there is more that we can calculate using the derivatives of the function.

Steps in Analyzing the Graph of a Function

- a. X-intercepts, Y-intercepts:
- b. Vertical Asymptotes, Horizontal Asymptotes:
- c. First derivative: Critical Points:
- d. Increasing interval, Decreasing interval:
- e. Second Derivative: Inflection Points:
- f. Concave Up: Concave Down:
- g. Sketch the Graph:

- 1. Analyze and sketch the graph of $f(x) = \frac{2(x^2 9)}{x^2 4}$
- a. X-intercepts, Y-intercepts:
- b. Vertical Asymptotes, Horizontal Asymptotes:
- c. First derivative: Critical Points:
- d. Increasing interval, Decreasing interval:
- e. Second Derivative: Inflection Points:
- f. Concave Up: Concave Down:
- g. Sketch the Graph:

- 2. Analyze and sketch the graph of $f(x) = \frac{x^2 2x + 4}{x 2}$
- a. X-intercepts, Y-intercepts:
- b. Vertical Asymptotes, Horizontal Asymptotes:
- c. First derivative: Critical Points:
- d. Increasing interval, Decreasing interval:
- e. Second Derivative: Inflection Points:
- f. Concave Up: Concave Down:
- g. Sketch the Graph:

- 3. Analyze and sketch the graph of $f(x) = x\sqrt{9 x^2}$
- a. X-intercepts, Y-intercepts:
- b. Vertical Asymptotes, Horizontal Asymptotes:
- c. First derivative: Critical Points:
- d. Increasing interval, Decreasing interval:
- e. Second Derivative: Inflection Points:
- f. Concave Up: Concave Down:
- g. Sketch the Graph:

- 4. Analyze and sketch the graph of $f(x) = x^4 4x^3$
- a. X-intercepts, Y-intercepts:
- b. Vertical Asymptotes, Horizontal Asymptotes:
- c. First derivative: Critical Points:
- d. Increasing interval, Decreasing interval:
- e. Second Derivative: Inflection Points:
- f. Concave Up: Concave Down:
- g. Sketch the Graph:

- 5. Analyze and sketch the graph of $f(x) = \sin x \sqrt{3} \cos x$ for the interval $[0, 2\pi]$
- a. X-intercepts, Y-intercepts:
- b. Vertical Asymptotes, Horizontal Asymptotes:
- c. First derivative: Critical Points:
- d. Increasing interval, Decreasing interval:
- e. Second Derivative: Inflection Points:
- f. Concave Up: Concave Down:
- g. Sketch the Graph: