Precalculus Lesson 12.5: The Binomial Theorem Mrs. Snow, Instructor

An expression with two terms is called a **binomial** for example a + b is a binomial. It is an easy enough process to square this binomial or to cube it, but expanding this binomial by a higher degree or multiplying it out more times, will quickly get tedious. Looking at the binomial expansion of a + b for the first five degrees we should see a pattern:

Expanding $(a + b)^n$

$$(a+b)^{1} = a+b$$

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

$$(a+b)^{5} = a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5}$$

What is the pattern?

$$(a+b)^n$$

- 1. There are n + 1 terms, the first being a^n and the last is b^n .
- 2. The exponents of *a* decrease by 1 from term to term while the exponents of *b* increase by one
- 3. The sum of the exponents of *a* and *b* in each term is *n*

The pattern that is present in binomial expansion has been known for centuries. Blaise Pascal organized it into a triangular format that has become known as Pascal's Triangle. Below are both his original version and what we use today:

Using Pascal's Triangle to expand binomials

Using Pascal's Triangle to expand binomials

$$f note symmetry on coefficients$$

$$[Expand (a + b)^7 coefficients$$

$$1 -7 - 21 - 35 - 35 - 21 - 7 - 1$$

$$a^7 + 7 a^6 b + 21 a^5 b^2 + 35 a^4 b^3 + 35 a^3 b^4 + 21 a^2 b^5 + 7 a b^4 b b^7$$

$$a^7 - > a^7 expenses$$

 $(2-3x)^5$

$$(2-3x)^{5} a=2 \quad b= -3x \quad coefficients \ i \ 1-5-10-10-5-1$$

$$(1) (2)^{5}+5(2^{4})(-3x)+10(2^{3})(-3x)^{2}+10(2^{2})(-3x)^{3}+5(2^{1})(-3x)^{4}+(-3x)^{5}$$

$$= 32-240x+120x^{2}-1080x^{3}+810x^{4}-243x^{5}$$
So: when $(a-b)^{n} \rightarrow alternating \pm pattern too.$

Pascal's Triangle is pretty slick for binomial expansions with relatively small values of n. For very large exponents, we need a more efficient way to calculate the coefficients. Pascal's Triangle is recursive in that to find the 100th row, we need the 99th row. So to come up with a process, we will need to use **factorials** that we studied in 12.1.

Binomial Coefficients

Calculate the binomial coefficients

Press pause and take a moment to work the example and hit play when ready to move on

This helps up because the values of Pascal's Triangle are in fact binomial coefficients!

Binomial Theorem

Binomial Theorem

Let x and a be real numbers. For any positive integer n, we have

$$(x+a)^n = \binom{n}{0} x^n + \binom{n}{1} a x^{n-1} + \dots + \binom{n}{j} a^j x^{n-j} + \dots + \binom{n}{n} a^n$$
$$= \sum_{j=0}^n \binom{n}{j} x^{n-j} a^j$$

Use the Binomial Theorem to expand the following:

 $(x + y)^4$

$$(x + y)^{4}$$

$$(\overset{4}{\circ}) \times^{4} + (\overset{4}{1}) \times^{3} y + (\overset{4}{2}) \times^{2} y^{2} + (\overset{4}{3}) \times y^{3} + (\overset{4}{4}) y^{4}$$

$$= \overline{x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}}$$

$$(\overset{4}{\circ}) = \frac{4!}{0!4!} = 1 \quad (\overset{4}{1}) = \frac{4!}{1!3!} = \frac{4\cdot3!}{\cancel{3!}} = 4 \quad (\overset{4}{2}) = \frac{4!}{2!} = \frac{4!}{2!2!} = \frac{4\cdot3\cdot2!}{\cancel{2!}} = 6$$

$$(\overset{4}{3}) = \frac{4!}{\cancel{3!}} = \frac{4!}{\cancel{3!}} = \frac{4!}{\cancel{3!}} = \frac{4\cdot\cancel{3!}}{\cancel{3!}} = 4 \quad (\overset{4}{4}) = \frac{4!}{\cancel{4!}} = 1$$

 $(2y - 3)^4$

Based on the expansion of $(x + a)^n$, the term containing x^j is $\binom{n}{n-j}a^{n-j}x^j$ (3)

Find the find the coefficient of y^8 in the expansion of $(2y + 3)^{10}$

Based on the expansion of
$$(x + a)^n$$
, the term containing x^j is
Use to find a $\binom{n}{n-j}a^{n-j}x^j$ (3)
a given exponent.
Find the find the coefficient of y^8 in the expansion of $(2y + 3)^{10}$ $\Omega = 10$
to find term that have y^8 :
 $\Omega = 10$ so $\binom{\Omega}{(1-j)} = \binom{10}{10-8} = \binom{10}{2} = \frac{10!}{2! 8!} = \frac{103680 \text{ g}^8}{3!}$

Find the 6th term in the expansion of $(x + 2)^9$

Find the 6th term in the expansion of
$$(x + 2)^9$$

 $n = exponent$
 $j = orduof term$
 $ninues 1$
 $b - 1 = 5$
 $b = (2b)(x^2)(2^2)$
 $= (12b)(x^4)(2^5)$ remember exponent
 $add up to equal 9$
 $= (4032 \times 4)$