Precalculus

Lesson 12.5: The Binomial Theorem

Mrs. Snow, Instructor

An expression with two terms is called a binomial for example $a+b$ is a binomial. It is an easy enough process to square this binomial or to cube it, but expanding this binomial by a higher degree or multiplying it out more times, will quickly get tedious.
Looking at the binomial expansion of $a+b$ for the first five degrees we should see a pattern:

Expanding $(a+b)^{n}$

$$
\begin{aligned}
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
& (a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{aligned}
$$

4c. Expand $(a+b)^{n}$

What is the pattern?

$$
(a+b)^{n}
$$

1. There are $n+1$ terms, the first being $\boldsymbol{a}^{\boldsymbol{n}}$ and the last is $\boldsymbol{b}^{\boldsymbol{n}}$.
2. The exponents of \boldsymbol{a} decrease by 1 from term to term while the exponents of \boldsymbol{b} increase by one
3. The sum of the exponents of \boldsymbol{a} and \boldsymbol{b} in each term is \boldsymbol{n}

The pattern that is present in binomial expansion has been known for centuries. Blaise Pascal organized it into a triangular format that has become known as Pascal's Triangle. Below are both his original version and what we use today:

Using Pascal's Triangle to expand binomials

Expand $(a+b)^{7}$

Press pause and take a moment to work the example and hit play when ready to move on

Using Pascal's Triangle to expand binomials

$$
(2-3 x)^{5}
$$

Press pause and take a moment to work the example and hit play when ready to move on

$$
\begin{aligned}
& (2-3 x)^{5} a=2 \quad b=-3 x \quad \text { coefficients i } 1-5-10-10-5-1 \\
& (1)(2)^{5}+5\left(2^{4}\right)(-3 x)+10\left(2^{3}\right)(-3 x)^{2}+10\left(2^{2}\right)(-3 x)^{3}+5\left(2^{1}\right)(-3 x)^{4}+(-3 x)^{5} \\
& =32-240 x+720 x^{2}-1080 x^{3}+810 x^{4}-243 x^{5}
\end{aligned}
$$

So: when $(a-b)^{n} \rightarrow$ altunating \pm patter too.

Pascal's Triangle is pretty slick for binomial expansions with relatively small values of n. For very large exponents, we need a more efficient way to calculate the coefficients. Pascal's Triangle is recursive in that to find the $100^{\text {th }}$ row, we need the $99^{\text {th }}$ row. So to come up with a process, we will need to use factorials that we studied in 12.1.

Binomial Coefficients

If j and n are integers with $0 \leq j \leq n$, the symbol $\binom{\boldsymbol{n}}{\boldsymbol{j}}$ is defined as

$$
\binom{n}{j}=\frac{n!}{j!(n-j)!}
$$

Calculate the binomial coefficients

$\binom{9}{4}$
$\binom{100}{3}$

Press pause and take a moment to work the example and hit play when ready to move on

This helps up because the values of Pascal's Triangle are in fact binomial coefficients!

$$
\begin{aligned}
& \binom{0}{0} \\
& \binom{1}{0} \quad\binom{1}{1} \\
& \binom{2}{0} \quad\binom{2}{1} \quad\binom{2}{2} \\
& \binom{3}{0} \quad\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3} \\
& \binom{4}{0} \quad\binom{4}{1} \quad\binom{4}{2} \quad\binom{4}{3} \quad\binom{4}{4} \\
& \binom{5}{0} \quad\binom{5}{1} \quad\binom{5}{2} \quad\binom{5}{3} \quad\binom{5}{4} \quad\binom{5}{5}
\end{aligned}
$$

$\binom{n}{0} \quad\binom{n}{1} \quad\binom{n}{2} \cdot \quad \cdot \quad\binom{n}{n-1} \quad\binom{n}{n}$
$n=$ exponent $\quad\binom{0}{0} \quad(a+b)^{0}$
$j=\begin{gathered}\text { order of term } \\ \text { minus }\end{gathered}$
$\binom{1}{0}\binom{1}{1}(a+b)^{\prime}$
$\binom{2}{0} \quad\binom{2}{1} \quad\binom{2}{2}(a+b)^{2}$
notice:
$\binom{3}{0} \quad\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3}(0+b)^{3}$
$n-j=$ exponent $\binom{3}{0} \quad\binom{3}{1} \quad\binom{3}{2} \quad\binom{3}{3}(b+b)^{3}$

$\binom{n}{0} \quad\binom{n}{1}\binom{n}{2} \cdot\binom{n}{n-1}\binom{n}{n}(a+b)^{n}$

Binomial Theorem

Binomial Theorem

Let x and a be real numbers. For any positive integer n, we have

$$
\begin{aligned}
(x+a)^{n} & =\binom{n}{0} x^{n}+\binom{n}{1} a x^{n-1}+\cdots+\binom{n}{j} a^{j} x^{n-j}+\cdots+\binom{n}{n} a^{n} \\
& =\sum_{j=0}^{n}\binom{n}{j} x^{n-j} a^{j}
\end{aligned}
$$

Use the Binomial Theorem to expand the following:

$$
(x+y)^{4}
$$

Press pause and take a moment to work the example and hit play when ready to move on

$$
\left.\begin{array}{l}
(x+y)^{4} \\
\binom{4}{0} x^{4}+\binom{4}{1} x^{3} y+\binom{4}{2} x^{2} y^{2}+\binom{4}{3} x y^{3}+\binom{4}{4} y^{4} \\
= \\
x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}
\end{array}\right] \begin{aligned}
& (4)=\frac{4!}{0!4!}=1\binom{4}{1}=\frac{4!}{11,3!}=\frac{4 \cdot 3!}{3!}=4\binom{4}{2}=\frac{4!}{2!}=\frac{4!}{2!2!}=\frac{4 \cdot 3 \cdot 2!}{2 \cdot 2!}=6 \\
& (4)=\frac{4!}{3!}=\frac{4!}{3!1!}=\frac{4!3!}{3!}=4\binom{4}{4}=\frac{4!}{0!4!}=1
\end{aligned}
$$

$$
(2 y-3)^{4}
$$

Press pause and take a moment to work the example and hit play when ready to move on

The Binomial theorem may be used to find a particular term of a binomial expansion:
Based on the expansion of $(x+a)^{n}$, the term containing x^{j} is

$$
\begin{equation*}
\binom{n}{n-j} a^{n-j} x^{j} \tag{3}
\end{equation*}
$$

Find the find the coefficient of y^{8} in the expansion of $(2 y+3)^{10}$

Find the $6^{\text {th }}$ term in the expansion of $(x+2)^{9}$

Find the $6^{\text {th }}$ term in the expansion of $(x+2)^{9}$
$\cap=$ exponent
$j=$ ore of term. minus 1 $6-1=5$

$$
\rightarrow\binom{n}{j}=\left(\begin{array}{l}
9 \\
9 \\
5
\end{array}\right)=\frac{3 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{5 \cdot 4 \cdot 3 \cdot 7 \cdot 1}=3 \cdot 7 \cdot 6=126
$$

What is the expenent of x for term 6 ?

$$
n-j=9-5=4 \Leftrightarrow x^{4}
$$

$$
\begin{aligned}
b^{\text {W}} \text { term } & =(\text { coefficient })\left(x^{?}\right)\left(2^{?}\right) \\
& =(126)\left(x^{4}\right)\left(2^{5}\right)
\end{aligned}
$$

$=(126)\left(x^{4}\right)\left(2^{5}\right) \quad \begin{array}{r}\text { remember exponents } \\ \text { addupto equal a }\end{array}$ add up to equal 9

$$
=4032 x^{4}
$$

