Precalculus
Lesson 12.5: The Binomial Theorem
Mrs. Snow, Instructor

An expression with two terms is called a
binomial for example a + b is a binomial. Itis
an easy enough process to square this
binomial or to cube it, but expanding this
binomial by a higher degree or multiplying it
out more times, will quickly get tedious.
Looking at the binomial expansion of a + b
for the first five degrees we should see a
pattern:
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What is the pattern?
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1. There are n + 1 terms, the first being a™ and the last is b™.
2. The exponents of a decrease by 1 from term to term while the exponents of b increase

by one

3. The sum of the exponents of a and b in each termisn

The pattern that is present in binomial expansion has been known for centuries. Blaise Pascal
organized it into a triangular format that has become known as Pascal’s Triangle. Below are both his

original version and what we use today:
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Using Pascal’s Triangle to expand binomials

Expand (a + b)’
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Press pause and take a moment to work the example and hit play when re
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Using Pascal’s Triangle to expand binomials
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Press pause and take a moment to work the example and hit play when ready to move on
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Pascal’s Triangle is pretty slick for binomial expansions with relatively small values of n. For very
large exponents, we need a more efficient way to calculate the coefficients. Pascal’s Triangle is
recursive in that to find the 100" row, we need the 99" row. So to come up with a process, we will

need to use factorials that we studied in 12.1.
Binomial Coefficients

X X . nh . .
If j and n are integers with 0 = j = n, the symbol (J) 1s defined as
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Calculate the binomial coefficients
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Press pause and take a moment to work the example and hit play when ready to move on
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This helps up because the values of Pascal’s Triangle are in fact binomial coefficients!

L

@ ¢ G
@ 0 G @
G G0 ¢

e O o
L = oderok nn | !
J Oﬁfihu;\e{ (0) (l) o

Binomial Theorem

Binomial Theorem

Let x and a be real numbers. For any positive integer n, we have
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Use the Binomial Theorem to expand the following:

(x+y)*

Press pause and take a moment to work the example and hit play when ready to move on
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(2y —3)*

Press pause and take a moment to work the example and hit play when ready to move on
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The Binomial theorem may be used to find a particular term of a binomial expansion:

Based on the expansion of (x + a)”, the term containing x' is
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Find the find the coefficient of y& in the expansion of (2y + 3)°

Press pause and take a moment to work the example and hit play when ready to move on




i T
Based on the expansion of (x + @)”, the term containing ¥/ is

[Use Yo Gnda .
} <p pe B e ool (rz —j)a Iyl
1 e g\\r;ﬂ/\ ‘g}(‘P@ﬂeﬂt-. /

= \
Find the find the coefficient of y® in the expansmn of (2y + 3= =10

3

o foed #mm

022 % () (me)- COQ %;

= o ond hfj

/ i 87 =
. l%/rm WlY{’\s s Zj = -Eo(:j (4‘5)(2‘3\) \/’5) &+21=)0
| 8
| = )02680
i ol

l'l

Find the 6" term in the expansion of (x + 2) °

Press pause and take a moment to work the example and hit play when ready to move on



Find the 6 term in the expansion of (x + 2) ¢ 3
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