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Lesson 14.1: Finding Limits Using Tables
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The title of this chapter is “Limits: A Preview of Calculus.” The central idea behind calculus is the
concept of a limit. Calculus is used in modeling numerous real-life phenomena, particularly
situations that involve change or motion. To better understand limits let’s look back at the
Greeks some 2500 years ago and how they used the “method of exhaustion” to find areas. To
find the area of a circle for example, the Greeks inscribed a polygon inside the curved region. As
the number of sides of the polygon increases, the polygon’s area approaches the area of the
circle. In other words:

area = lim a,
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Definition of a Limit:

We write:

| lim f(x) =L
Xx—a

We say: The limit of f(x), as x approaches a, equals L.

We mean: as x gets closer and closer to a, the y value gets closer and closer to L.
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Finding a Limit from a Table

Find the limit of
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Find the limit fro@nd estimate using the graph of (what are the restrictions?):
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Limits That Fail to Exist: A Function With a Jump
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Limits That Fail to Exist: A Function That Oscillates
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Limits That Fail to Exist: A Function with a Vertical Asymptote
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One Sided Limits

Left Sided Limit

lim f(x)=L

X—a

Right Sided Limit

Jdim f(x) =L

x—a®
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Very Important!!!!

X—a

limf(x)=L if and only if lim f(x)=L AND lim f(x)=L
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Limits From a Graph
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A Piecewise-Defined Function i
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