Calculus

Lesson 5.1: The Natural Logarithmic Function: Differentiation Mrs. Snow, Instructor

When we were introduced to the General Power Rule, it came with an important disclaimer – it does not apply when n=-1. So, what is the antiderivative of $f(x)=\frac{1}{x}$??? Well, that is where the Second Fundamental Theorem of Calculus comes in to play; it will allow us to define this crazy function!

DEFINITION OF THE NATURAL LOGARITHMIC FUNCTION

The natural logarithmic function is defined by

$$\ln x = \int_1^x \frac{1}{t} \, dt, \quad x > 0.$$

The domain of the natural logarithmic function is the set of all positive real numbers.

THEOREM 5.1 PROPERTIES OF THE NATURAL LOGARITHMIC FUNCTION

The natural logarithmic function has the following properties.

- 1. The domain is $(0, \infty)$ and the range is $(-\infty, \infty)$.
- 2. The function is continuous, increasing, and one-to-one.
- 3. The graph is concave downward.

THEOREM 5.2 LOGARITHMIC PROPERTIES

If a and b are positive numbers and n is rational, then the following properties are true.

1.
$$ln(1) = 0$$

2.
$$\ln(ab) = \ln a + \ln b$$

3.
$$\ln(a^n) = n \ln a$$

4.
$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

Expand the following logarithms

a.
$$\ln \frac{10}{9} = \ln 10 - \ln 9$$

b.
$$\ln \sqrt{3x+2} = \ln (3x+2)^{1/2} = \frac{1}{2} \ln (3x+2)$$

c.
$$\ln \frac{6x}{5} = \ln 6x - \ln 5 = \ln 6 + \ln x - \ln 5$$

expand too

distribute

d. $\ln \frac{(x^2 + 3)^2}{(x\sqrt[3]{x^2 + 1})} = \ln (x^2 + 3)^2 - (\ln x (x^2 + 1)^3)$

$$= 2\ln (x^2 + 3) - \ln x - \sqrt{3} \ln (x^2 + 1)$$

The Number e

DEFINITION OF e

The letter e denotes the positive real number such that

$$\ln e = \int_1^e \frac{1}{t} dt = 1.$$

e is the base for the natural logarithm because $\ln e = 1$.

Evaluating Natural Logarithmic Expressions

a.
$$\ln 2 \approx 0.693$$

b.
$$\ln 32 \approx 3.466$$

c.
$$\ln 0.1 \approx -2.303$$

Dung & chung!

THEOREM 5.3 DERIVATIVE OF THE NATURAL LOGARITHMIC FUNCTION

Let u be a differentiable function of x.

1.
$$\frac{d}{dx}[\ln x] = \frac{1}{x}, \quad x > 0$$

1.
$$\frac{d}{dx}[\ln x] = \frac{1}{x}, \quad x > 0$$
 2. $\frac{d}{dx}[\ln u] = \frac{1}{u} \frac{du}{dx} = \frac{u'}{u}, \quad u > 0$

Differentiation of Logarithmic Functions

a.
$$\frac{d}{dx}[\ln(2x)] = \frac{1}{u} \frac{du}{dx} = \frac{1}{2x} \frac{dx}{dx} 2x - \frac{2}{2x} = \frac{1}{2x}$$

b.
$$\frac{d}{dx}[\ln(x^2+1)]$$
 $\perp \frac{du}{dx} = \frac{1}{\chi^2+1} \frac{d}{dx} \chi^2+1 = \frac{1}{\chi^2+1} \frac{(2x)}{2x} = \frac{2x}{\chi^2+1}$

c.
$$\frac{d}{dx}[x \ln x] = \frac{d}{dx}\chi(\ln x) + \chi \frac{d}{dx}\ln x = (1)\ln x + \chi(\frac{1}{x}) \neq \ln x + 1$$
Product rule $\frac{d}{dx}[x \ln x]$

d.
$$\frac{d}{dx}[(\ln x)^3]^7 = 3(\ln x)^2 \frac{d}{dx} \ln x = 3(\ln x)^2 (\frac{1}{x})$$

Logarithmic Properties as Aids to Differentiation

Differentiate:
$$f(x) = \ln \sqrt{x + 1} = \ln \left(\frac{x + 1}{x + 1} \right)^{2}$$

$$= \frac{1}{2} \ln \left(\frac{x + 1}{x + 1} \right) = \frac{1}{$$

$$f(x) = \ln \frac{x(x^{2} + 1)^{2}}{\sqrt{2x^{3} - 1}} \quad \text{cutes}$$

$$= \tan x + 2 \ln (x^{2} + 1) - \frac{1}{2} \ln 2x^{3} - 1$$

$$= \frac{1}{x} + 2 \left(\frac{1}{x^{2} + 1}\right)(2x) - \frac{1}{2}\left(\frac{1}{2x^{3} + 1}\right)(4x^{2})$$

$$= \frac{1}{x} + \frac{4x}{x^{2} + 1} - \frac{3x^{2}}{2x^{3} - 1}$$

Logarithmic Differentiation

Find the derivative of:

$$y = \frac{(x-2)^2}{\sqrt{x^2+1}}, \quad x \neq 2$$

$$2 = \frac{(x-2)^2}{\sqrt{x^2+1}}, \quad x \neq 2$$

$$2 = \frac{(x-2)^2}{\sqrt{x^2+1}}, \quad x \neq 2$$

$$2 = \frac{(x-2)^2}{\sqrt{x^2+1}}$$

$$3 = \frac{(x-2)^2}{\sqrt{x^2+1}}$$

$$4 = \frac{(x-2)^2}{\sqrt{x^2+$$

Remember that logarithims are undefined for negative numbers, hence, you will find expressions with the ln|x|. That is OK, we are able to differentiate as if the absolute values signs were not present.

THEOREM 5.4 DERIVATIVE INVOLVING ABSOLUTE VALUE

If u is a differentiable function of x such that $u \neq 0$, then

$$\frac{d}{dx}[\ln|u|] = \frac{u'}{u}.$$

Derivative Involving Absolute Value

· Find the derivative of:

$$f(x) = \ln \left| \cos x \right|$$

$$= \frac{d}{dx} \cos x = -\sin x = -\tan x$$

Finding Relative Extrema

Locate the Relative Extrema of:

$$y = \ln(x^2 + 2x + 3)$$

 $y = \frac{2x + 2}{x^2 + 2x + 3} = 0$ 2(x+1) = 0
Ascriminant $x = -1$
 $4 - + (1)(3) = \text{neg}$

discriminant
$$4-4(1)(3) = \text{neg}, \qquad -\frac{2}{3} + \frac{1}{3}$$

$$y = Ln (-1-2+3) = Ln2$$

 $n \leq 2$
 $min (-1, \leq 2)$