Calculus
Lesson 5.1: The Natural Logarithmic Function: Differentiation
Mrs. Snow, Instructor
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When we were introducedto the Gene:éi Power Rule, it came with an |mprtant disclaimer — it
does not apply when n = —1. So, what is the antiderivative of f(x) = i? 77 Well, that is where
the Second Fundamental Theorem of Calculus comes in to play; it will allow us to define this
crazy function! e e

DEFINITION OF THE NATURAL LOGARITHMIC FUNCTION

The natural logarithmic function is defined by

Inx = j dr, x> 0.
x

The domain of the natural logarithmic function is the set of all positive real
numbers.
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Ifx > Lthenlnx > 0. W0 <xy< Lthenlnx < 0,

‘ THEOREM 5.1 PROPERTIES OF THE NATURAL LOGARITHMIC FUNCTION

The natural logarithmic function has the following properties.
1. The domain is (0, oc) and the range is (— ¢, o¢).

2. The function is continuous, increasing, and one-to-one.

i

3. The graph is concave downward.




: THEOREM 5.2 LOGARITHMIC PROPERTIES

If @ and b are positive numbers and # is rational, then the following properties
are true.

L in(l) =0

2. Inlab) = Ina + Inb

3. Inle") = nlna
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 Expand the following logarithms
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| The Numbere .
| DEFINITION OF ¢ =
: The letter ¢ denotes the positive real number such that '
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| 15 the base for l& ;alural logarithm :
| because In ¢ = |. |

Evaluating Natural Logarithmic Expresswns o
o In2 = 0.693 colol

b. In 32 = 3.466 _-DV-*{)?\CDW“*
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THEOREM 5.3 DERIVATIVE OF THE NATURAL LOGARITHMIC FUNCTION
Let u be a differentiable function of x.
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Differentiation of Logarithmic Functions
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Logarithmic Properties as Aids to Differentiation

Differentiate: ” L
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And yes, we can use logarithms to help us in differentiating nonlogarithmic functions!

. Logarithmic Differentiation
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| Remember that logarithims are undefined for negatwe numbers, hence, you will find
expressions with the In|x|. Thatis OK, we are able to differentiate as if the absolute values
- signs were not present.

THEOREM 5.4 DERIVATIVE INVOLVING ABSOLUTE VALUE
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i If uis a differentiable function of x such that « # 0, then
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- Derivative Involving Absolute Value
' *  Find the derivative of:

f(x)=In|cosx|
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 Finding Relative Extrema 4= Ln (1= 2+ )=in2

* Locate the Relative Extrema of:
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