Precalculus

Lesson 8.3: Law of Cosines 0 bey the Law

Mrs. Snow, Instructor
c?=a’+b%-2abcosC

Last section we looked at the law of sines. There are two other situations where the law of sines
will not work; here we will use the Law of Cosines:

. " Case 3 - Two sides and the angle included between the two sides are known (SAS).
Case 4 Three 5|des are known (SSS). :
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The sides of a triangle are: a = 3,b = 4, and ¢ = 6. Find the angles of the triangle
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SAS: Solve the triangle ABC, where 2C = 60°,a = 2,and b =3
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Navigation
A motorized sail boat leaves Naples, Florida bound for Key West, 150 miles away. Maintaining a
constant speed of 15 mph, but encountering heavy crosswinds and strong currents, the crew finds

after 4 hours that the sailboat is off course by 20°. )
How far is the sailboat from Key West at this time? 45, 8

b) Through what angle should the sailboat turn to correct its course %Z_&o
How much time has been added to the trip because of this? Assume a constant speed of 15
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Precalculus

If we know two sides of a triangle and the included triangle we may apply the general formula
for the area of a triangle (SAS).
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| To find area of a triangle knowing SAS
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From the law of cosines comes Heron’s Formula that may be used to find the area of a triangle if
only given the lengths of the three sides (SSS):

For a triangle with sides of lengths a, b, andc it will havéng;éh'\iperimeter of:

1
| s=3 (a+b+c)
the area of the triangle is:




Find the area of a triangle whose sides are 2
a=4b=5c=7 /2;1‘1" gd(eﬂs
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Find the area of the triangle:
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