Precalculus Lesson 8.3: Law of Cosines Mrs. Snow, Instructor

Obey the Law $c^2=a^2+b^2-2abcosC$

Last section we looked at the law of sines. There are two other situations where the law of sines will not work; here we will use the Law of Cosines:

Case 3 – Two sides and the angle included between the two sides are known (SAS).

Case 4 - Three sides are known (SSS).

a word of courton: Once LAW OF COSINES you find that 1st ongle or sich you com use law $a^2 = b^2 + c^2 - 2bc \cos A$ of Sires to solve fer the $b^2 = a^2 + c^2 - 2ac \cos B$ remaining press. Note: $c^2 = a^2 + b^2 - 2ab \cos C$ Sint = acutex not necessarily the Obtuse of thehis the

Navigation

A motorized sail boat leaves Naples, Florida bound for Key West, 150 miles away. Maintaining a constant speed of 15 mph, but encountering heavy crosswinds and strong currents, the crew finds after 4 hours that the sailboat is off course by 20° .

a) How far is the sailboat from Key West at this time? 95, 8 ...

b) Through what angle should the sailboat turn to correct its course 32.8°

c) How much time has been added to the trip because of this? Assume a constant speed of 15 mph. ~ 24 niques

Precalculus Lesson 8.4: Area of a Triangle Mrs. Snow, Instructor

If we know two sides of a triangle and the included triangle we may apply the general formula for the area of a triangle (SAS).

$$\sin C = \frac{h}{a}$$

solving for h:

$$h = a \sin C$$

so area is:

$$K = \frac{1}{2}bh = \frac{1}{2}ab\sin C$$

To find area of a triangle knowing SAS

$$K = \frac{1}{2}ab \sin C$$

$$K = \frac{1}{2}ac \sin B$$

$$K = \frac{1}{2}bc \sin A$$

From the law of cosines comes **Heron's Formula** that may be used to find the area of a triangle if only given the lengths of the three sides (SSS):

For a triangle with sides of lengths a, b, and c, it will have a **semiperimeter** of:

$$s=\frac{1}{2}(a+b+c)$$

the area of the triangle is:

$$K = \sqrt{s(s-a)(s-b)(s-c)}$$

Find the area of a triangle whose sides are a = 4, b = 5, c = 7

Three Sides

Use Semiporineter & Heron's Formula S== = (a+b+c)

$$S = \frac{1}{2}(a+b+c)$$

= $\frac{1}{2}(4+5+7) = 8$

Find the area of the triangle:

Use general formela as we have 2 sides of angle.

Area = \frac{1}{2}(6)(8) \sin 300