Lesson 10.7: Plane Curves and Parametric Equations

Mrs. Snow, Instructor

Think of a point moving in a plane through time. The x - and y-coordinates of the point will then be a function of time. So:

Let $x=f(t)$ and $y=g(t)$ where f and g are two functions whose common domain is some interval, I. The collection of points defined by

$$
(x, y)=(f(t), g(t))
$$

is called a plane curve. The equations

$$
x=f(t) \quad y=g(t)
$$

where t is in I are parametric equations for the curve. the variable t is called parameter.

Graphing a Curve Defined by Parametric Equations: Notice that for every value of t, we get a point on the curve.

$$
\begin{gathered}
x=3 t^{2} \quad y=2 t \\
-2 \leq t \leq 2
\end{gathered}
$$

Now find the rectangular equation for

Eliminating the Parameter:

Often a curve given by parametric equations can also be represented by a single rectangular equation in x and y. The process of finding this equation is called eliminating the parameter.

Find the rectangular equation for the plane curve defined by the parametric equations.
Determine the domain of x.
$x=4 t, \quad y=t-3-2 \leq t \leq 2$

Find the rectangular equation of the curve whose parametric equations are:

$$
x=4 \cos t, \text { and } y=3 \sin t \quad-0 \leq t \leq 2 \pi
$$

