

A **hyperbola** is the collection (locus) of all points In the plane, the difference of whose distances from two fixed points, called the foci, is a constant.





Equation of a Hyperbola; Center at (0, 0); Transverse Axis along the y-axis

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$
$$b^2 = c^2 - a^2$$

center at (0, 0); foci at  $(0, \pm c)$ ; and vertices at  $(0, \pm a)$ 

two oblique asymptotes:  $y = \pm \frac{a}{b}x$ 



Analyze the equation, find the center, transverse axis , vertices, foci, and asymptotes and graph:

 $9x^2 - 4y^2 = 36$ 



| Hyperbolas at a center of (h, k)<br>Transverse Axis Parallel to a Coordinate Axis<br>$b^2 = c^2 - a^2$ |                                                   |                                                 |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|
| Opens                                                                                                  | Opens left and right<br>Transverse axis<br>x-axis | Opens up and down<br>Transverse axis<br>y-axis  |
| Form:                                                                                                  | $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$   | $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$ |
| Center:                                                                                                | ( <i>h</i> , <i>k</i> )                           | ( <i>h</i> , <i>k</i> )                         |
| Vertices                                                                                               | (h + a, k) and $(h - a, k)$                       | (h, k + a) and $(h, k - a)$                     |
| Slope of<br>Asymptotes                                                                                 | $\pm \frac{b}{a}$                                 | $\pm \frac{a}{b}$                               |
| Equation of<br>Asymptotes                                                                              | $y-k=\pm\frac{b}{a}(x-h)^*$                       | $y-k=\pm\frac{a}{b}(x-h)^*$                     |
| Foci                                                                                                   | (h + c, k), (h - c, k))                           | (h, k + c), (h, k - c)                          |

\*The homework will ask for the equation of the asymptote. For the quiz and test, <u>all you will be</u> <u>expected to answer is the slope of the asymptote line.</u>

