Calculus

Lesson 3.4: Concavity and the Second

 Derivative Test Mrs. Snow, InstructorIn this section, we will see how locating the intervals in which f^{\prime} increases or decreases can be used to determine where the graph of f is curving upward or curving downward.

DEFINITION OF CONCAVITY	
Let f be differentiable on an open interval I. The graph of f is concave upward on I if f^{\prime} is increasing on the interval and concave downward on I if f^{\prime} is decreasing on the interval.	
Concave upward, (a) The graph of f lies above its tangent lines.	(b) The graph of f lies below its tangent lines.

THEOREM 3.7 TEST FOR CONCAVITY

Let f be a function whose second derivative exists on an open interval I.

1. If $f^{\prime \prime}(x)>0$ for all x in I, then the graph of f is concave upward on I.
2. If $f^{\prime \prime}(x)<0$ for all x in I, then the graph of f is concave downward on I.

To apply this theorem:

1. locate the x-vaues at which $f^{\prime \prime}(x)=0$ or f " (x) does not exist (where the denominator is $=0$
2. use these these x-values to determine test intervals
3. test the sign of f " (x) in each of the test intervals

Determining Concavity

Determine the open intervals on which the graph is concave up or concave down.
$f(x)=\frac{6}{x^{2}+3}$

Determine the open intervals on which the graph is concave up or concave down.
$f(x)=\frac{x^{2}+1}{x^{2}-4}$

DEFINITION OF POINT OF INFLECTION

Let f be a function that is continuous on an open interval and let c be a point in the interval. If the graph of f has a tangent line at this point $(c, f(c))$, then this point is a point of inflection of the graph of f if the concavity of f changes from upward to downward (or downward to upward) at the point.

The point where the concavity changes and the tangent line to the graph exists, is a point of inflection.

The concavity of f changes at a point of inflection. Note that a graph crosses its tangent line at a point of inflection.

To locate possible points of inflection, you can determine the values of x where $f^{\prime \prime}(\mathrm{x})=0$ or $f^{\prime \prime}(x)$ does not exist. The process is similar to locating extrema of f.

THEOREM 3.8 POINTS OF INFLECTION

If $(c, f(c))$ is a point of inflection of the graph of f, then either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}$ does not exist at $x=c$.

Note, the converse of this theorem is not necessarily true! Think of the parent quadratic function. $y=x^{2}$ is concave upwards from $-\infty<x<0$ and $0<x<\infty$, however its second derivative is 0 at $x=0$ but, $(0,0)$ is not a point of inflection.

Determine the points of inflection and discuss the concavity of the graph. $f(x)=x^{4}-4 x^{3}$

The seond derivative test may beused to preform a simple test for relative maxima and minima along with testing for concavity.

THEOREM 3.9 SECOND DERIVATIVE TEST

Let f be a function such that $f^{\prime}(c)=0$ and the second derivative of f exists on an open interval containing c.

1. If $f^{\prime \prime}(c)>0$, then f has a relative minimum at $(c, f(c))$.
2. If $f^{\prime \prime}(c)<0$, then f has a relative maximum at $(c, f(c))$.

If $f^{\prime \prime}(c)=0$, the test fails. That is, f may have a relative maximum, a relative minimum, or neither. In such cases, you can use the First Derivative Test.

- Locate critical numbers These are where we may have a minimum or maximum or neither
- If $f^{\prime \prime}$ is positive, the function is concave up and c is a minimum
- If $f^{\prime \prime}$ is negative, the function is concave down and c is a maximum.
- If $f^{\prime \prime}=0, c$ is neither minimum or maximum

Find the relative extrema.
$f(x)=-3 x^{5}+5 x^{3}$

