Calculus

Lesson: 3.3 Increasing and Decreasing Functions and the First Derivative Test

Mrs. Snow, Instructor

Someone right now is making this
face trying to solve a math problem

In this section we will study how derivatives can be used to classify relative extrema as either relative minima or relative maxima.

DEFINITIONS OF INCREASING AND DECREASING FUNCTIONS
A function f is increasing on an interval if for any two numbers x_{1} and x_{2} in the interval, $x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$.
A function f is decreasing on an interval if for any two numbers x_{1} and x_{2} in the interval, $x_{1}<x_{2}$ implies $f\left(x_{1}\right)>f\left(x_{2}\right)$.

A function is increasing if, as x moves to the right, its graph moves up, and is decreasing if its graph moves down.

The derivative is related to the slope of a function.

THEOREM 3.5 TEST FOR INCREASING AND DECREASING FUNCTIONS

Let f be a function that is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

1. If $f^{\prime}(x)>0$ for all x in (a, b), then f is increasing on $[a, b]$.
2. If $f^{\prime}(x)<0$ for all x in (a, b), then f is decreasing on $[a, b]$.
3. If $f^{\prime}(x)=0$ for all x in (a, b), then f is constant on $[a, b]$.

WARNING!! If our function f is to be continuous, always remember to verify the domain of f before determining the critical points. If could be that where f^{\prime} is a "DNE" critical point, f has a domain restriction!!!

Intervals on Which \boldsymbol{f} is Increasing or Decreasing

Find the open intervals on which $f(x)$ is increasing or decreasing.
$f(x)=x^{3}-\frac{3}{2} x^{2}$

GUIDELINES FOR FINDING INTERVALS ON WHICH A FUNCTION IS INCREASING OR DECREASING

Let f be continuous on the interval (a, b). To find the open intervals on which f is increasing or decreasing, use the following steps.

1. Locate the critical numbers of f in (a, b), and use these numbers to determine test intervals.
2. Determine the sign of $f^{\prime}(x)$ at one test value in each of the intervals.
3. Use Theorem 3.5 to determine whether f is increasing or decreasing on each interval.
These guidelines are also valid if the interval (a, b) is replaced by an interval of the form $(-\infty, b),(a, \infty)$, or $(-\infty, \infty)$.

THEOREM 3.6 THE FIRST DERIVATIVE TEST

Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at c, then $f(c)$ can be classified as follows.

1. If $f^{\prime}(x)$ changes from negative to positive at c, then f has a relative minimum at $(c, f(c))$.
2. If $f^{\prime}(x)$ changes from positive to negative at c, then f has a relative maximum at $(c, f(c))$.
3. If $f^{\prime}(x)$ is positive on both sides of c or negative on both sides of c, then $f(c)$ is neither a relative minimum nor a relative maximum.

Relative minimum

Relative maximum

Neither relative minimum nor relative maximum

Applying the First Derivative Test

Find the relative extrema of the function $f(x)$ in the interval $(0,2 \pi)$. (check domain of $f(x)$)
$f(x)=\frac{1}{2} x-\sin x$

Find the relative extrema of
$f(x)=\left(x^{2}-4\right)^{2 / 3}$

Find the relative extrema of
$f(x)=\frac{x^{4}+1}{x^{2}}$

