Calculus

Lesson 3.1: Extrema on an Interval, and Lesson 3.2: Rolle's Theorem and the Mean Value Theorem Mrs. Snow, Instructor

Because calculus is used in so many applications of physics and engineering, finance, and so on, there is a lot of effort devoted to studying the behavior of a function over an interval. Where is the minimum value? Is there a minimum value? Where is the function increasing or decreasing? Is the object starting to slow down? These are just a few of the questions that may be answered by understanding what the extrema are on a given interval.

Definition of Extrema

DEFINITION OF EXTREMA

Let f be defined on an interval I containing c.

1. $f(c)$ is the minimum of \boldsymbol{f} on \boldsymbol{I} if $f(c) \leq f(x)$ for all x in I.
2. $f(c)$ is the maximum of f on \boldsymbol{I} if $f(c) \geq f(x)$ for all x in I.

The minimum and maximum of a function on an interval are the extreme values, or extrema (the singular form of extrema is extremum), of the function on the interval. The minimum and maximum of a function on an interval are also called the absolute minimum and absolute maximum, or the global minimum and global maximum, on the interval.

(a) f is continuous, $[-1,2]$ is closed.

(c) g is not continuous, $[-1,2]$ is closed. Extrema can occur at interior points or endpoints of an interval. Extrema that occur at the endpoints are called endpoint extrema.

(b) f is continuous, $(-1,2)$ is open.

THEOREM 3.1 THE EXTREME VALUE THEOREM

If f is continuous on a closed interval $[a, b]$, then f has both a minimum and a maximum on the interval.

DEFINITION OF RELATIVE EXTREMA

1. If there is an open interval containing c on which $f(c)$ is a maximum, then $f(c)$ is called a relative maximum of f, or you can say that f has a relative maximum at $(c, f(c))$.
2. If there is an open interval containing c on which $f(c)$ is a minimum, then $f(c)$ is called a relative minimum of f, or you can say that f has a relative minimum at $(c, f(c))$.
The plural of relative maximum is relative maxima, and the plural of relative minimum is relative minima. Relative maximum and relative minimum are sometimes called local maximum and local minimum, respectively.

Informally, for a continuous function, you can think of a relative maximum as occurring on a "hill" on the graph, and a relative minimum as occurring in a "valley" on the graph.
f has a relative maximum at $(0,0)$ and a relative minimum at $(2,-4)$.

DEFINITION OF A CRITICAL NUMBER

Let f be defined at c. If $f^{\prime}(c)=0$ or if f is not differentiable at c, then c is a critical number of f.

c is a critical number of f.

THEOREM 3.2 RELATIVE EXTREMA OCCUR ONLY AT CRITICAL NUMBERS

If f has a relative minimum or relative maximum at $x=c$, then c is a critical number of f.

These "hills" and "valleys" can occur in two ways. If the function is smooth and rounded, the graph has a horizontal tangent line at the minimum or maximum. If it is sharp and peaked, the graph represents a function that is not differentiable and the minimum or maximum occurs at the peak.

GUIDELINES FOR FINDING EXTREMA ON A CLOSED INTERVAL

To find the extrema of a continuous function f on a closed interval $[a, b]$, use the following steps.

1. Find the critical numbers of f in (a, b).
2. Evaluate f at each critical number in (a, b).
3. Evaluate f at each endpoint of $[a, b]$.
4. The least of these values is the minimum. The greatest is the maximum.

Finding Extrema on a Closed Interval
$f(x)=3 x^{4}-4 x^{3}$ on the interval $[-1,2]$

- find $f^{\prime}(x)=0$
- evaluate $f(x)$ at the critical numbers within the interval and the endpoints
$f(x)=2 x-3 x^{2 / 3}$ on the interval of $[-1,3]$
\square

3.2: Rolle's Theorem and the Mean Value Theorem

The Extreme Value Theorem from 3.1, states that on a closed interval, there will be both a minimum and a maximum, and they may occur on an endpoint. Rolle's Theorem, named after the French mathematician Michel Rolle (1652-1719), gives specific conditions that guarantee the existence of an extreme value in the interior of a closed interval.

THEOREM 3.3 ROLLE'S THEOREM

Let f be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). If
$f(a)=f(b)$
then there is at least one number c in (a, b) such that $f^{\prime}(c)=0$.

THEOREM 3.4 THE MEAN VALUE THEOREM

If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), then there exists a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

The "mean" refers to the mean or average rate of change of f in the interval $[a, b]$

The Mean Value Theorem guarantees the existence of a tangent line that is parallel to the secant line through the points $(a, f(a))$ and $(b, f(b))$ For rate of change, ther must be a point in the open interval (a, b) at which the instantaneous rate of change is equal to the average rate of change over the close interval [a, b]
Finding a Tangent Line
$f(x)=5-4 / x$ find all values of c in the open interval $(1,4)$ such that:
$f^{\prime}(c)=\frac{f(4)-f(1)}{4-1}$
in other words, to find the tangent line we will work backwards to find the value of f^{\prime} and with the slope determine the value of x.

