Precalculus

Lesson: 4.3 Complex Zeros; Fundamental Theorem of Algebra

Mrs. Snow, Instructor

Not all quadratic equations have real solutions.
A variable in the complex number system is referred to as a complex variable. A complex polynomial function \boldsymbol{f} of degree n is a function of the form

$$
\begin{equation*}
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \tag{1}
\end{equation*}
$$

where $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are complex numbers, $a_{n} \neq 0, n$ is a nonnegative integer, and x is a complex variable. As before, a_{n} is called the leading coefficient of f. A complex number r is called a complex zero of f if $f(r)=0$.

If we look at the complex number system, every quadratic equation has at least one complex solution; remember rational and irrational roots are in fact complex numbers. We just don't write them in the complex form. The fact that each polynomial function will have a complex solution brings about an important theorem.

Fundamental Theorem of Algebra.

Every complex polynomial function $f(x)$ of degree $n \geq 1$ has at least one complex zero.
Another important theorem states that if we have the solution $a+b i$ then we must also have the solution $a-b i$.

Conjugate Pairs Theorem.

Let $f(x)$ be a polynomial function whose coefficients are real numbers. If $r=a+b i$ is a zero of f, the complex conjugate $\bar{r}=a-b i$ is also a zero of f.
and a corollary
A polynomial function f of odd degree with real coefficients has at least one real zero.

Using the Conjugate Pairs Theorem
A polynomial function f of degree 5 whose coefficients are real numbers has the zeros $1,5 i$, and $1+i$. Find the remaining two zeros.

Example:

Find a polynomial function of degree 4 whose coefficients are real numbers and that has the zeros of $1,1,-4+i$

Given that $x= \pm 2$ are solutions, find the remaining complex zeros of the polynomial function.

$$
f(x)=x^{4}+2 x^{3}+x^{2}-8 x-20
$$

