Calculus

Lesson 2.1 The Derivative and the Tangent Line Problem
Mrs. Snow, Instructor

The 411 of calculus pretty much goes back to the $17^{\text {th }}$ century to several problems mathematicians were facing. In this section we are looking at the tangent line problem. To find a tangent line at a point P , what we end up having to do is to find the slope of the tangent line at point P. We start out with the slope of a secant line and as the change in the horizontal distance Δx, approaches 0 , we can obtain a more and more accurate slope approximation for the secant line which in turn becomes a line tangent at a point P.

Definition of Tangent Line with Slope m

If f is defined on an open interval containing ${ }_{\boldsymbol{a} . \boldsymbol{k} . \boldsymbol{a}}$. and if the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=m=\lim _{\boldsymbol{h} \rightarrow \mathbf{0}} \frac{\boldsymbol{f}(\boldsymbol{a}+\boldsymbol{h})-\boldsymbol{f}(\boldsymbol{a})}{\boldsymbol{h}}=\boldsymbol{m}
$$

exists, then the line passing through $(c, f(c))$ with slope m is the tangent line to the graph of f at the point $(c, f(c))$.

Finding slope using the definition of slope:

Find the slope of the graph of $f(x)$ at the point $(2,1)$.
$f(x)=2 x-3$

Find the slopes of the tangent lines to the graph of $f(x)$ at the points
$(0,1)$ and $(-1,2)$
$f(x)=x^{2}+1$

Definition of the Derivative of a Function

The derivative of f at x is given by
$f^{\prime}(x)=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
provided the limit exists. For all x for which this limit exists, f^{\prime} is a function of x.

Some common notations for the derivative:

$$
f^{\prime}(x), \quad \frac{d y}{d x}, \quad y^{\prime}, \quad \frac{d}{d x}[f(x)], \quad D_{x}[y] .
$$

Finding slope using the definition of the derivative:
Find the derivative of $f(x)$ where:
$f(x)=x^{3}+2 x$

Find $f^{\prime}(x)$ for $f(x)$. Then find the slope of the graph of f at the points $(1,1)$ and $(4,2)$.

$$
f(x)=\sqrt{x}
$$

Find the derivative with respect to t for the function y.

$$
y=\frac{2}{t}
$$

The derivative of f at a is : $f^{\prime}(x)=\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} \frac{f(x)-\boldsymbol{f}(\boldsymbol{a})}{x-a} \quad$ provided that the limit exists. In order for the limit to exist, the one-sided limits must exist.

A function with a sharp turn

$$
f(x)=|x-2|
$$

While $f(x)$ is continuous, is it differentiable at $x=2$???

The limits from both sides do not equal. So, f is not differentiable at $x=2$ and the graph of f does not have a tangent line at the point $(2,0)$.

Graph with vertical tangent line

$f(x)=x^{1 / 3}$

THEOREM 2.1 DIFFERENTIABILITY IMPLIES CONTINUITY

If f is differentiable at $x=c$, then f is continuous at $x=c$.

The following statements summarize the relationship between continuity and differentiability.

1. If a function is differentiable at $x=c$, then it is continuous at $x=c$.

So, differentiability implies continuity.
2. It is possible for a function to be continuous at $\mathrm{x}=\mathrm{c}$ and not be differentiable at $\mathrm{x}=\mathrm{c}$. So, continuity does not imply differentiability.

