

We can extend the application of definite integrals from the area of a region under a curve to the area of a region between two curves.
Region Between Two Curves

Notice on the above graphs, the same integrand $[f(x)-g(x)]$ can be used as long as f and g are continuous and $g(x) \leq f(x)$ for all x in the interval $[a, b]$.

Finding the Area of a Region Between Two

Curves

- Find the area of the region bounded by the graphs of
$y=x^{2}+2, y=-x, x=0$, and $x=1$

Region bounded by the graph of f, the graph of $g, x=0$, and $x=1$

A Region Lying Between Two Intersecting

Graphs

- Find the area of the region bounded by the graphs
$f(x)=2-x^{2}$ and $g(x)=x$

Region bounded by the graph of f and the graph of g

Curves that Intersect at More Than Two Points

- Find the area of the region between the graphs of
$f(x)=3 x^{3}-x^{2}-10 x$ and $g(x)=-x^{2}+2 x$

In this chapter we will be using representative rectangles in various applications of integration.
$>A$ vertical rectangle (width of Δx) implies integration with respect to \boldsymbol{x}.
$>A$ horizontal rectangle (width of Δy) implies integration with respect to y.

Integration with respect to \boldsymbol{y}.

Horizontal Representative Rectangles

- Find the area of the region bounded by the graphs of
$x=3-y^{2} \quad$ and $\quad x=y+1$

Horizontal rectangles (integration with respect to y)

