When you find there are limits at infinity

Just as the title of the lesson states, given a function $f(x)$ as x approaches infinity what happens to the value $f(x)$?

Find

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \quad \lim _{x \rightarrow-\infty} \frac{1}{x}
$$

So we get a rule to remember:
If k is any positive integer, then:

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{k}}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{1}{x^{k}}=0
$$

Evaluate:

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}
$$

Finding a limit at negative infinity
\square
$\lim \mathrm{e}^{\mathrm{x}}$
$x \rightarrow-\infty$

Can function at infinity have no limit??????

$\lim \sin x$
 $x \rightarrow \infty$

In chapter 12 we studied sequences: $a_{1}, a_{2}, a_{3}, \ldots . a_{n}$. Using limits we can determine the behavior of a sequence as n becomes large.

Convergent vs. divergent: Converge is when things come together from different directions so they eventually meet. Diverge is when things separate and go in different directions. Well, in sequences the term a_{n} may converge by approaching a number or it may not.....

Finding the Limit of a Sequence

$$
\lim _{n \rightarrow \infty} \frac{n}{n+1}
$$

Does the Sequence Converge or Diverge?
$\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}}$

Finding the Limit of a Sequence
Find the limit of the sequence given.
$\mathrm{a}_{\mathrm{n}}=\frac{15}{\mathrm{n}^{3}}\left[\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right]$

