Sketch the region bounded by the graphs of the equations, and determine the area of the region.
5.(7R) $y=x, y=x^{3}$
9.(7R) $y=\sin x, y=\cos x, \quad \frac{\pi}{4} \leq x \leq \frac{5 \pi}{4}$
21.(7.1) $f(x)=x^{2}+2 x+1, g(x)=3 x+3$
29. (7.1) $f(y)=y^{2}+1, g(y)=0, \quad y=-1, \quad y=2$

Find the volume of the solid generated by revolving the plane region bounded by the equations about the indicated line(s).
6. $y=x^{2}, y=x^{3}$ rotated about the x-axis.
14. $y=6-2 x-x^{2}, y=x+6$
a) the x-axis
b) the line $y=3$

19(7.2) Find the volume formed when revolving the region formed by $y=x, y=0, y=4, x=6$ about the line $x=6$

$$
\begin{equation*}
y=x, \quad y=0, \quad x=4 \tag{7R}
\end{equation*}
$$

a) the x-axis
b) the y-axis
c) the line $x=4$
d) the line $x=6$
22.

$$
y=\sqrt{x}, \quad y=2, \quad x=0
$$

a) the x-axis
b) the line $y=2$
c) the y-axis
d) the line $x=-1$
28. $y=e^{-x}, y=0, x=1$ revolved about the x-axis
30. Consider the region bounded by the graphs of the equations $y=x \sqrt{x+1}$ and $y=0$

Find the volume of the solid generated by revolving the region about the a) x-axis and b) the y-axis.
32. The region under the curve of $y=\frac{1}{x}$ from $x=1$ to $x=3$ is revolved about the x-axis. Find the volume of the solid formed.
62. Find the volume of the solid whose base is bounded by the graphs of $y=x+6$ and $y=x^{2}-6$ with the indicated cross sections taken perpendicular to the x-axis.
a) Squares
b) Rectangles of height 1

