Precalculus
Lesson 12.5: The Binomial Theorem
Mrs. Snow, Instructor
4c. Expand (a+b)"
An expression with two terms is called a (a 4 L)ﬂ
binomial for example a + b is a binomial. Itis
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an easy enough process to square this = (q + b)
binomial or to cube it, but expanding this n
. . . M . . = (o. -* h')
binomial by a higher degree or multiplying it
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What is the pattern?

1. There are n + 1 terms, the first being a™ and the last is b™.

2. The exponents of @ decrease by 1 from term to term while the exponents of b increase
by one

3. The sum of the exponents of a and b in each term isn

(a+b)" i
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The pattern that is present in binomial expansion has been known for centuries. Blaise Pascal
organized it into a triangular format that has become known as Pascal’s Triangle. Below are both his
original version and what we use today:
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Using Pascal’s Triangle to expand binomials {/ V!Ql‘( 4\ | mm 2‘ on _(ok é{( el
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Pascal’s Triangle is pretty slick for binomial expansions with relatively small values of n. For very
large exponents, we need a more efficient way to calculate the coefficients. Pascal’s Triangle is
recursive in that to find the 100" row, we need the 99" row. So to come up with a process, we will

need to use factorials that we studied in 12.1.

Binomial Coefficients

If j and n are integers with 0 = j = n, the symbol (j) is defined as

(n) 3 n!
J jt{n = j)!
Calculate the binomial coefficients
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This helps up because the values of Pascal’s Triangle are in fact binomial coefficients!
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Binomial Theorem

Binomial Theorem

Let x and a be real numbers. For any positive integer n, we have
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Use the Binomial Theorem to expand the following:
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The Binomial theorem may be used to find a particular term of a binomial expansion:
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Based on the expansion of (x + a@)”, the term containing x’ is
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Find the find the coefficient of y& in the;xpansmn of (2y +3)1° N=10
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Find the 6™ term in the expansion of (x + 2)° 3 -
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