Calculus

Lesson 5.5: Bases other Than e and Applications
Mrs. Snow, Instructor
No, I got bored first

and invented Calculus

The base of the natural exponential function is e. This "natural" base can be used to assign a meaning to a general base a.

PROPERTIES OF INVERSE FUNCTIONS

1. $y=a^{x}$ if and only if $x=\log _{a} y$
2. $a^{\log _{a} x}=x$, for $x>0$
3. $\log _{a} a^{x}=x$, for all x

Bases Other Than e

- Solve for x in each equation.
a. $3^{x}=\frac{1}{81}$
b. $\log _{2} x=-4$

THEOREM 5.13 DERIVATIVES FOR BASES OTHER THAN e

Let a be a positive real number $(a \neq 1)$ and let u be a differentiable function of x.

1. $\frac{d}{d x}\left[a^{x}\right]=(\ln a) a^{x}$
2. $\frac{d}{d x}\left[a^{u}\right]=(\ln a) a^{u} \frac{d u}{d x}$
3. $\frac{d}{d x}\left[\log _{a} x\right]=\frac{1}{(\ln a) x}$
4. $\frac{d}{d x}\left[\log _{a} u\right]=\frac{1}{(\ln a) u} \frac{d u}{d x}$

Differentiating Functions to Other Bases

- Find the derivative of each function.
a. $y=2^{x}$
b. $y=2^{3 x}$
c. $y=\log _{10} \cos x$

$$
\begin{aligned}
& \text { Integrals for Bases Other than } \mathrm{e} \\
& \qquad \int 2^{x} d x
\end{aligned}
$$

THEOREM 5.14 THE POWER RULE FOR REAL EXPONENTS

Let n be any real number and let u be a differentiable function of x.

1. $\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}$
2. $\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} \frac{d u}{d x}$

Comparing Variables and Constants

$\frac{d}{d x}\left[e^{e}\right]$
$\frac{d}{d x}\left[e^{x}\right]$
$\frac{d}{d x}\left[x^{e}\right]$
$y=x^{x}$

Compound Interest Formulas

$$
\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)^{\mathrm{nt}}
$$

$\mathrm{A}=\mathrm{Pe}^{\mathrm{rt}}$

Comparing Continuous and Quarterly Compounding

- A deposit of $\$ 2500$ is made in an account that pays an annual interest rate of 5%. Find the balance in the account at the end of 5 years if the interest is compounded a) quarterly, b) monthly, and c) continuously.

Bacterial Culture Growth

- A bacterial culture is growing according to the logistic growth function
$\mathrm{y}=\frac{1.25}{1+0.25 \mathrm{e}^{-0.4 \mathrm{t}}} \quad \mathrm{t} \geq 0$
where y is the weight of the culture in grams and t is the time in hours. Find the weight of the culture after a) 0 hours, b) 1 hour, c) 10 hours. d) What is the limit as t approaches infinity.

