Calculus Lesson 5.5: Bases other Than e and Applications Mrs. Snow, Instructor

No, I got bored first

and invented Calculus

The base of the natural exponential function is e. This "natural" base can be used to assign a meaning to a general base a.

DEFINITION OF EXPONENTIAL FUNCTION TO BASE a

If *a* is a positive real number $(a \neq 1)$ and *x* is any real number, then the **exponential function to the base** *a* is denoted by a^x and is defined by

 $a^x = e^{(\ln a)x}.$

If a = 1, then $y = 1^x = 1$ is a constant function.

Radioactive Half-Life Model

• The half-life of carbon-14 is about 5715 years. A sample contains 1 gram of carbo-14. How much will be present in 10000 years?

DEFINITION OF LOGARITHMIC FUNCTION TO BASE a

If a is a positive real number $(a \neq 1)$ and x is any positive real number, then the **logarithmic function to the base** a is denoted by $\log_a x$ and is defined as

$$\log_a x = \frac{1}{\ln a} \ln x$$

(change of base formula: $\log_a x = \frac{\log_b x}{1-x}$)

$$\log_a x = \frac{\log_b n}{\log_b a}$$
)

PROPERTIES OF INVERSE FUNCTIONS

1. $y = a^x$ if and only if $x = \log_a y$ 2. $a^{\log_a x} = x$, for x > 03. $\log_a a^x = x$, for all x

Bases Other Than e

 $\frac{1}{81}$

• Solve for x in each equation.

b.
$$\log_2 x = -4$$

THEOREM 5.13 DERIVATIVES FOR BASES OTHER THAN e

Let *a* be a positive real number $(a \neq 1)$ and let *u* be a differentiable function of *x*.

1.
$$\frac{d}{dx}[a^x] = (\ln a)a^x$$

3. $\frac{d}{dx}[\log_a x] = \frac{1}{(\ln a)x}$
2. $\frac{d}{dx}[a^u] = (\ln a)a^u \frac{du}{dx}$
4. $\frac{d}{dx}[\log_a u] = \frac{1}{(\ln a)u} \frac{du}{dx}$

Differentiating Functions to Other Bases

• Find the derivative of each function. **a.** $y = 2^x$ **b.** $y = 2^{3x}$

c.
$$y = \log_{10} \cos x$$

Integrals for Bases Other than e

$$\int a^{x} dx = \left(\frac{1}{\ln a}\right) a^{x} + C$$

 $\int 2^x dx$

THEOREM 5.14 THE POWER RULE FOR REAL EXPONENTS

Let n be any real number and let u be a differentiable function of x.

1.
$$\frac{d}{dx}[x^n] = nx^{n-1}$$

2.
$$\frac{d}{dx}[u^n] = nu^{n-1}\frac{du}{dx}$$

Comparing Variables and Constants $\frac{d}{dx}[e^e]$

 $\frac{d}{dx}[e^x]$

$$\frac{d}{dx}[x^e]$$

 $y = x^x$

Compound Interest Formulas

$$A = P \left(1 + \frac{r}{n}\right)^{nt}$$

 $A = Pe^{rt}$

Comparing Continuous and Quarterly Compounding A deposit of \$2500 is made in an account that pays an annual interest rate of 5%. • Find the balance in the account at the end of 5 years if the interest is compounded a) quarterly, b) monthly, and c) continuously. **Bacterial Culture Growth** A bacterial culture is growing according to the logistic growth function ٠ $y = \frac{1.25}{1 + 0.25e^{-0.4t}} \quad t \ge 0$ where y is the weight of the culture in grams and t is the time in hours. Find the weight of the culture after a) 0 hours, b) 1 hour, c) 10 hours. d) What is the limit as t approaches infinity.