Precalculus

Lesson 12.5: The Binomial Theorem

Mrs. Snow, Instructor

An expression with two terms is called a binomial for example $a+b$ is a binomial. It is an easy enough process to square this binomial or to cube it, but expanding this binomial by a higher degree or multiplying it out more times, will quickly get tedious.

Looking at the binomial expansion of $a+b$ for the first five degrees we should see a pattern:

Expanding $(a+b)^{n}$

$$
\begin{aligned}
& (a+b)^{1}=a+b \\
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
& (a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{aligned}
$$

What is the pattern?

$$
(a+b)^{n}
$$

1. There are $n+1$ terms, the first being $\boldsymbol{a}^{\boldsymbol{n}}$ and the last is $\boldsymbol{b}^{\boldsymbol{n}}$.
2. The exponents of \boldsymbol{a} decrease by 1 from term to term while the exponents of \boldsymbol{b} increase by one
3. The sum of the exponents of \boldsymbol{a} and \boldsymbol{b} in each term is \boldsymbol{n}

The pattern that is present in binomial expansion has been known for centuries. Blaise Pascal organized it into a triangular format that has become known as Pascal's Triangle. Below are both his original version and what we use today:

Using Pascal's Triangle to expand binomials

| Expand $(a+b)^{7}$ |
| :--- | :--- |
| |
| $(2-3 x)^{5}$ |
| |

Pascal's Triangle is pretty slick for binomial expansions with relatively small values of n. For very large exponents, we need a more efficient way to calculate the coefficients. Pascal's Triangle is recursive in that to find the $100^{\text {th }}$ row, we need the $99^{\text {th }}$ row. So to come up with a process, we will need to use factorials that we studied in 12.1.

Binomial Coefficients

If j and n are integers with $0 \leq j \leq n$, the symbol $\binom{\boldsymbol{n}}{\boldsymbol{j}}$ is defined as

$$
\binom{n}{j}=\frac{n!}{j!(n-j)!}
$$

Calculate the binomial coefficients

$$
\begin{aligned}
& \binom{9}{4} \\
& \binom{100}{3}
\end{aligned}
$$

This helps up because the values of Pascal's Triangle are in fact binomial coefficients!

YES!

Binomial Theorem

Let x and a be real numbers. For any positive integer n, we have

$$
\begin{aligned}
(x+a)^{n} & =\binom{n}{0} x^{n}+\binom{n}{1} a x^{n-1}+\cdots+\binom{n}{j} a^{j} x^{n-j}+\cdots+\binom{n}{n} a^{n} \\
& =\sum_{j=0}^{n}\binom{n}{j} x^{n-j} a^{j}
\end{aligned}
$$

Use the Binomial Theorem to expand the following:

$$
(x+y)^{4}
$$

$$
(2 y-3)^{4}
$$

The Binomial theorem may be used to find a particular term of a binomial expansion:

Based on the expansion of $(x+a)^{n}$, the term containing x^{j} is

$$
\begin{equation*}
\binom{n}{n-j} a^{n-j} x^{j} \tag{3}
\end{equation*}
$$

Find the find the coefficient of y^{8} in the expansion of $(2 y+3)^{10}$

Find the $6^{\text {th }}$ term in the expansion of $(x+2)^{9}$

