Precalculus

Lesson 12.5: The Binomial Theorem Mrs. Snow, Instructor

An expression with two terms is called a **binomial** for example a+b is a binomial. It is an easy enough process to square this binomial or to cube it, but expanding this binomial by a higher degree or multiplying it out more times, will quickly get tedious. Looking at the binomial expansion of a+b for the first five degrees we should see a pattern:

4c. Expand
$$(a+b)^n$$

$$(a+b)^n$$

$$= (a + b)^n$$

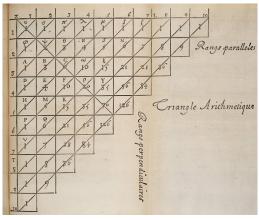
Expanding $(a+b)^n$

$$(a+b)^{1} = a+b$$

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

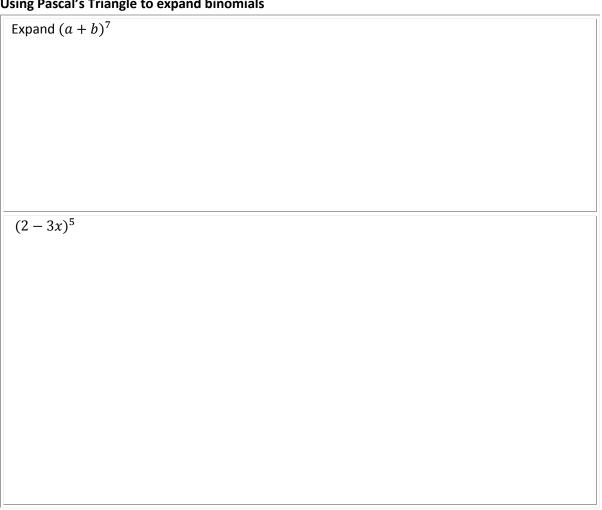
$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a+b)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$


$$(a+b)^{5} = a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5}$$


What is the pattern?

$$(a+b)^n$$


- 1. There are n+1 terms, the first being a^n and the last is b^n .
- 2. The exponents of a decrease by 1 from term to term while the exponents of b increase by one
- 3. The sum of the exponents of a and b in each term is n

The pattern that is present in binomial expansion has been known for centuries. Blaise Pascal organized it into a triangular format that has become known as Pascal's Triangle. Below are both his original version and what we use today:

Using Pascal's Triangle to expand binomials

Pascal's Triangle is pretty slick for binomial expansions with relatively small values of n. For very large exponents, we need a more efficient way to calculate the coefficients. Pascal's Triangle is recursive in that to find the 100^{th} row, we need the 99^{th} row. So to come up with a process, we will need to use **factorials** that we studied in 12.1.

Binomial Coefficients

If j and n are integers with $0 \le j \le n$, the symbol $\binom{n}{j}$ is defined as

$$\binom{n}{j} = \frac{n!}{j! (n-j)!}$$

Calculate the binomial coefficients

$$\binom{100}{3}$$

This helps up because the values of Pascal's Triangle are in fact binomial coefficients!

$$\begin{pmatrix}
0 \\
0
\end{pmatrix}$$

$$\begin{pmatrix}
1 \\
0
\end{pmatrix}
\begin{pmatrix}
1 \\
1
\end{pmatrix}$$

$$\begin{pmatrix}
2 \\
0
\end{pmatrix}
\begin{pmatrix}
2 \\
1
\end{pmatrix}
\begin{pmatrix}
2 \\
2
\end{pmatrix}$$

$$\begin{pmatrix}
3 \\
0
\end{pmatrix}
\begin{pmatrix}
3 \\
1
\end{pmatrix}
\begin{pmatrix}
3 \\
2
\end{pmatrix}
\begin{pmatrix}
3 \\
3
\end{pmatrix}$$

$$\begin{pmatrix}
4 \\
0
\end{pmatrix}
\begin{pmatrix}
4 \\
1
\end{pmatrix}
\begin{pmatrix}
4 \\
2
\end{pmatrix}
\begin{pmatrix}
4 \\
3
\end{pmatrix}
\begin{pmatrix}
4 \\
4
\end{pmatrix}$$

$$\begin{pmatrix}
5 \\
0
\end{pmatrix}
\begin{pmatrix}
5 \\
1
\end{pmatrix}
\begin{pmatrix}
5 \\
2
\end{pmatrix}
\begin{pmatrix}
5 \\
2
\end{pmatrix}
\begin{pmatrix}
5 \\
3
\end{pmatrix}
\begin{pmatrix}
5 \\
4
\end{pmatrix}
\begin{pmatrix}
5 \\
5
\end{pmatrix}$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\begin{pmatrix}
n \\
0
\end{pmatrix}
\begin{pmatrix}
n \\
1
\end{pmatrix}
\begin{pmatrix}
n \\
2
\end{pmatrix}$$

$$\vdots$$

Binomial Theorem

Binomial Theorem

Let x and a be real numbers. For any positive integer n, we have

$$(x+a)^n = \binom{n}{0} x^n + \binom{n}{1} a x^{n-1} + \dots + \binom{n}{j} a^j x^{n-j} + \dots + \binom{n}{n} a^n$$
$$= \sum_{j=0}^n \binom{n}{j} x^{n-j} a^j$$

Use the Binomial Theorem to expand the following:

$$(x+y)^4$$

$$(2y-3)^4$$

The Binomial theorem may be used to find a particular term of a binomial expansion:

sased on the expansion of ($(x + a)^n$, the term containing x^j is	
	$\binom{n}{n-j}a^{n-j}x^j$	(3

Find the find the coefficient of y^8 in the expansion of $(2y+3)^{10}$
Find the 6 th term in the expansion of $(x + 2)^9$
(x + 2)