When any two numbers in a sequence differ by a constant value, the sequence is identified as an Arithmetic Sequence.

An arithmetic sequence may be defined recursively as:

$$
a_{1}=a, \quad a_{n}-a_{n-1}=d
$$

For an arithmetic sequence $\left\{a_{n}\right\}$ whose first term is $\boldsymbol{a}_{\mathbf{1}}$ and common difference is \boldsymbol{d}, the $\boldsymbol{n} \boldsymbol{t h}$ term is determined by the formula:

$$
a_{n}=a_{n-1}+d
$$

Determine if the sequence is Arithmetic, what is the common difference?

$4,6,8,10 \ldots$.	
$\left\{s_{n}\right\}=\{3 n+5\}$	
$\left\{t_{n}\right\}=\{4-n\}$	

Finding the formula for an Arithmetic Sequence:

$\boldsymbol{n t h}$ Term of an Arithmetic Sequence

For an arithmetic sequence $\left\{a_{n}\right\}$ whose first term is a_{1} and whose common difference is d, the nth term is determined by the formula

$$
a_{n}=a_{1}+(n-1) d
$$

Find the forty-first term of the arithmetic sequence: $2,6,10,14,18, \ldots$

Finding the Recursive Formula for an Arithmetic Sequence:

The $8^{\text {th }}$ term of an arithmetic sequence is 75 , and the $20^{\text {th }}$ term is 39 .
a) Find the first term and the common difference
b) Give a recursive formula for the sequence.
c) What is the nth term of the sequence?

Finding the Sum of an Arithmetic Sequence

The sum of the first n terms of an arithmetic sequence is known as a Partial Sum of an Arithmetic Sequence
Let $\left\{a_{n}\right\}$ be an arithmetic sequence with first term a_{1} and common difference of d.
The sum S_{n} of the first n terms of $\left\{a_{n}\right\}$ may be found in two ways:

$$
\begin{aligned}
& S_{n=}=a_{1}+a_{2}+a_{3}+\cdots+a_{n} \\
& =\sum_{k=1}^{n}\left[a_{1}+(k-1) d\right]=
\end{aligned}
$$

$$
\begin{gathered}
S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)
\end{gathered}
$$

Find the sum S_{n} of the first n terms of the sequence: $\left\{a_{n}\right\}=\{3 n+5\}$

Find the sum: $60+64+68+72+\cdots+120$

