Precalculus Lesson 12.3 Geometric Sequences Mrs. Snow, Instructor

Another type of sequence is the geometric sequence. It occurs in applications to finance and population growth. An arithmetic sequence, we found that we added a number to the initial term to form the sequence. In geometric sequences, we start with a number and then generate a sequence by repeatedly multiplying a nonzero number r.

You know what seems odd to me? Numbers that aren't divisible by two."

funny math joke by jimbuf

A **geometric sequence*** may be defined recursively as $a_1 = a$, $\frac{a_n}{a_{n-1}} = r$, or as

 $a_1 = a$,

$$a_n = ra_{n-1}$$

where $a_1 = a$ and $r \neq 0$ are real numbers. The number a_1 is the first term, and the nonzero number r is called the **common ratio.** So: $\frac{Q_2}{Q_1} = \Gamma = \frac{Q_4}{Q_2}$

Identify the first term and common ratio:

2, 6, 18, 54, 162, ...

$$a_1 = 2$$
 $r = \frac{6}{2} = \frac{18}{6} = \frac{54}{18}$

Identify the first term and common ratio:

$$\{s_n\} = 2^{-n}$$

$$S_1 = 2^{-1} = \frac{1}{Z}$$

$$S_2 = 2^{-2} = \frac{1}{A}$$

$$\Gamma = \frac{1}{4} = \frac{1}{4} \left(\frac{2}{1} \right) = \frac{1}{2} = \Gamma$$

Identify the first term and common ratio:

$$\{t_n\}=\{3\cdot 4^n\}$$

$$E_1 = 3(4') = 12$$

Find a Formula for a Geometric Sequence

nth Term of a Geometric Sequence

For a geometric sequence $\{a_n\}$ whose first term is a_1 and whose common ratio is r, the nth term is determined by the formula

$$a_n = a_1 r^{n-1} \qquad r \neq 0$$

Given the sequence $10, 9, \frac{81}{10}, \frac{729}{100}, ...$

$$\Gamma = \frac{9}{10}$$

- a) Find the nth term
- b) find the 9th term

(a)
$$Q_n = 10 \left(\frac{9}{10}\right)^{n-1}$$

c) find a recursive formula for the sequence

(a)
$$a_n = 10 \left(\frac{9}{10}\right)^{n-1}$$

(b) $a_q = 10 \left(\frac{9}{10}\right)^q = 10 \left(\frac{9}{10}\right)^q = 4.3046721$

Per definition:

(c) Per definition:

(e) per definition:

$$a_1 = 10$$
 $a_n = \frac{9}{10}(a_{n-1})$

Find the sum of the first n terms of a geometric sequence, (Partial Sum)

Given a geometric sequence, we can calculate the sum of any given number of the terms.

Sum of the First n Terms of a Geometric Sequence

Let $\{a_n\}$ be a geometric sequence with first term a_1 and common ratio r, where $r \neq 0$, $r \neq 1$. The sum S_n of the first n terms of $\{a_n\}$ is

$$S_n = a_1 + a_1 r + a_1 r^2 + \dots + a_1 r^{n-1} = \sum_{k=1}^n a_1 r^{k-1}$$

$$S_{\mathsf{N}} = a_1 \cdot \frac{1 - r^n}{1 - r} \qquad r \neq 0, 1$$
 Know

Find the sum
$$S_n$$
, for the first n terms of the geometric series:
$$\left(\frac{1}{2}\right)^n \qquad S_n = \frac{1}{2} \cdot \frac{1 - \frac{1}{2}}{1 - \frac{1}{2}} = \frac{1 - \frac{1}{2}}{2} \cdot \frac{1 - \frac{1}{2}}{2} = \frac{1}{2} \cdot \frac{1 - \frac{1}{2}}{2} = \frac{1 - \frac{1}{2}}{2} = \frac{1 - \frac{1}{2}}{2} = \frac{1 - \frac{1}{2}}{2} = \frac{1 - \frac{1}{2}}{$$

If we think about a geometric series, we will realize that it will continue to go on and on. Hence it is called and **Infinite Geometric Series**.

If we set about to find the sum of an infinite geometric series, it will do one of two things. First the sum S_n will approach a specific value or it **converges**. If not, then it is called a **divergent**.

Convergence of an Infinite Geometric Series

If |r| < 1, the infinite geometric series $\sum_{k=1}^{\infty} a_1 r^{k-1}$ converges. Its sum is

$$\sum_{k=1}^{\infty} a_1 r^{k-1} = \frac{a_1}{1-r}$$
 The Sum of the whole Ser

Determine if the geometric series converges or diverges. If it converges, find its sum.

eonverses?
$$\sum_{k=1}^{\infty} 2\left(\frac{2}{3}\right)^{k-1} = \frac{2}{1-\frac{2}{3}}$$

$$|\frac{2}{3}| \le 1 \text{ yes conversent:} = \frac{2}{\frac{1}{3}}$$

$$|Q_1 = 2\left(\frac{2}{3}\right)^{1-1} = 2$$

$$|Q_2 = 2\left(\frac{2}{3}\right)^{1-1} = 2$$

$$|Q_3 = 2\left(\frac{2}{3}\right)^{1-1} = 2$$

Writing a Repeated Decimal as a Fraction:
Show that the repeating decimal 0.999 ... = 1 999 = 9 + 9 + 9 + 9 + 9 + 9 + 100 + 1000 + 1

Initially, a pendulum swings through an arc of 18 inches. On each successive swing, the length of the arc is 0.98 of the previous length.

- a) What is the length of the arc of the 10th swing?
- b) On which swing is the length of the arc first less than 12 inches?
- c) After 15 swings, what total distance will the pendulum have swung?
- d) When it stops, what total distance will the pendulum have swung?

(a)
$$1 = 18 \text{ swing} = 18 \text{ in}$$
 $2 = 18 \text{ swing} = 18 \text{ (.98)}$
 $3 = 18 \text{ (.98)}$

(b) 18 (.98)
 $3 = 18 \text{ (.9$