

As we learned back in Algebra II, logarithm functions and exponential functions are inverses of one another. As Algebra II was a long time ago, let's do a quick review.

DEFINITION OF THE NATURAL EXPONENTIAL FUNCTION

The inverse function of the natural logarithmic function $f(x)=\ln x$ is called the natural exponential function and is denoted by

$$
f^{-1}(x)=e^{x}
$$

That is,

$$
y=e^{x} \quad \text { if and only if } \quad x=\ln y
$$

$$
\ln \left(e^{x}\right)=x \quad \text { and } \quad e^{\ln x}=x
$$

Solving Exponential and Logarithmic Equations
$7=e^{x+1}$
$\ln (2 x-3)=5$

THEOREM 5.10 OPERATIONS WITH EXPONENTIAL FUNCTIONS

Let a and b be any real numbers.

1. $e^{a} e^{b}=e^{a+b}$
2. $\frac{e^{a}}{e^{b}}=e^{a-b}$

PROPERTIES OF THE NATURAL EXPONENTIAL FUNCTION

1. The domain of $f(x)=e^{x}$ is $(-\infty, \infty)$, and the range is $(0, \infty)$.
2. The function $f(x)=e^{x}$ is continuous, increasing, and one-to-one on its entire domain.
3. The graph of $f(x)=e^{x}$ is concave upward on its entire domain.
4. $\lim _{x \rightarrow-\infty} e^{x}=0$ and $\lim _{x \rightarrow \infty} e^{x}=\infty$

The natural exponential function is its own derivative!!

THEOREM 5.11 DERIVATIVES OF THE NATURAL EXPONENTIAL FUNCTION

Let u be a differentiable function of x.

1. $\frac{d}{d x}\left[e^{x}\right]=e^{x}$
2. $\frac{d}{d x}\left[e^{u}\right]=e^{u} \frac{d u}{d x}$
a. $\frac{d}{d x}\left[e^{2 x-1}\right]$
b. $\frac{d}{d x}\left[e^{-3 / x}\right]$

Locating Relative Extrema
$\mathrm{f}(\mathrm{x})=\mathrm{xe}^{\mathrm{x}}$

THEOREM 5.12 INTEGRATION RULES FOR EXPONENTIAL FUNCTIONS

Let u be a differentiable function of x.

1. $\int e^{x} d x=e^{x}+C \quad$ 2. $\int e^{u} d u=e^{u}+C$

Integrating Exponential Functions
Find $\int e^{3 x+1} d x$. Find $\int 5 x e^{-x^{2}} d x$.

Integrating Exponential Functions
a. $\int \frac{e^{1 / x}}{x^{2}} d x$
b. $\int \sin x e^{\cos x} d x$

Finding Areas Bounded By Exponential Functions
a. $\int_{0}^{1} e^{-x} d x$
b. $\int_{0}^{1} \frac{e^{x}}{1+e^{x}} d x$
c. $\int_{-1}^{0}\left[e^{x} \cos \left(e^{x}\right)\right] d x$

