Precalculus

Lesson 5.4: Logarithmic Functions

Mrs. Snow, Instructor

Why do lumberjacks make good musicians?

desmos.com
a beautiful, free online graphing calculator
The inverse of an exponential function is a logarithmic function.
Let a be a positive number with a not equal to 1 . The logarithmic function with base a is defined by:

$$
\log _{a} x=y
$$

if and only if

$$
a^{y}=x
$$

Domain: $(0, \infty)$
translation: whatever you are taking the log of has to be greater than zero
Range: $(-\infty, \infty)$
start with the base and move in a counterclockwise fashion.
Change each logarithmic statement to an equivalent statement involving an exponent.
$\log _{a} 4=5$
$\log _{e} b=-3$
$\log _{3} 5=c$

$\log _{a} 4=5$	$\log _{e} b=-3$	$\log _{3} 5=c$
Change each exponential statement to an equivalent statement involving a logarithm.		
$1.2^{3}=m$	$e^{b}=9$	$a^{4}=24$
$\log _{2} 16$		
Find the exact value.		

Find the domain of each logarithmic function.

$$
f(x)=\log _{2}(x+3) \quad g(x)=\log _{5}\left(\frac{1+x}{1-x}\right)
$$

Graphing Logarithmic Functions

Knowing the general form of the graph of the log function is a short cut for graphing.

1. Write in its equivalent exponential form
2. Find the inverse; x is y and y is x, solve for y
3. Graph the log function's inverse, and reflect the exponential graph across the line of symmetry $y=x$.
Graph, determine the domain, range and vertical asymptote.

$$
y=\log _{2} x
$$

Graph, determine the domain, range and vertical asymptote.

$$
y=\log _{1 / 3} x
$$

The Natural and Common Logarithm
The Natural Logarithm is a logarithm with the base e. It is written with the abbreviation of \ln.

$$
\begin{aligned}
& y=\ln x, \quad \text { if and only if } \quad x=e^{y} \\
& y=\log x, \quad \text { if and only if } x=10^{y}
\end{aligned}
$$

The logarithm with base 10 is called the common logarithm and is denoted by omitting the base

Graph, determine the domain, range and vertical asymptote. Identify the inverse and the domain and range of the inverse.

$$
f(x)=-\ln (x-2)
$$

Solving Logarithmic Equations

$\log _{3}(4 x-7)=2$

Using Logarithms to Solve and Exponential Equation

$$
e^{2 x}=5
$$

Precalculus

Lesson 5.5: Properties of Logarithms

Mrs. Snow, Instructor

Logarithms have some very useful properties that can be derived directly from the definition and the laws of exponents:

$\log _{a} 1$	$=0$
$\log _{a} a$	$=1$
$a^{\log _{a} M}=M$	
$\log _{a} a^{r}$	$=r$

Simplify:

$2^{\log _{2} \pi}$	$\log _{0.2} 0.2^{-\sqrt{2}}$
$\ln e^{k t}$	$\log _{4} 4$

Properties of Logarithms

$$
\begin{gathered}
\log _{a} M N=\log _{a} M+\log _{a} N \\
\log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N \\
\log _{a} M^{r}=r \log _{a} M
\end{gathered}
$$

Write the logarithmic expressions as Sum and Difference Logs

$$
\log _{a}\left(x \sqrt{x^{2}+1}\right), x>0
$$

$$
\ln \frac{x^{2}}{(x-1)^{3}}
$$

$$
\log _{a} \frac{\sqrt{x^{2}+1}}{x^{3}(x+1)^{4}}
$$

Writing Expressions as a Single Logarithm

$\log _{a} 7+4 \log _{a} 3$	$\frac{2}{3} \ln 8-\ln \left(5^{2}-1\right)$

$$
\log _{a} x+\log _{a} 9+\log _{a}\left(x^{2}+1\right)-\log _{a} 5
$$

Change of Base

If $a \neq 1, b \neq 1$, and M are positive real numbers, then

$$
\begin{gathered}
\log _{a} M=\frac{\log _{b} M}{\log _{b} a} \\
\text { Therefore: } \\
\log _{a} M=\frac{\log M}{\log a} \quad \text { and } \quad \log _{a} M=\frac{\ln M}{\ln a}
\end{gathered}
$$

Using the Change of Base Formula

$\log _{5} 89$	$\log _{\sqrt{2}} \sqrt{5}$

