

The inverse of an exponential function is a logarithmic function.

Let <i>a</i> be a positive number with a not equal to 1. The logarithmic function with base a is defined by:				
$log_{a}x = v$				
	if and only if			
	$a^y - x$			
$u^{\nu} - x$				
Domain: $(0 \ \infty)$				
translation: whateve	er you are takina the loa of ha	s to be areater than zero		
Range: $(-\infty,\infty)$				
start with the base and move in a counterclockwise fashion.				
Change each logarithmic statement to an equivalent statement involving an exponent.				
log A = 5	$\log h = -3$	log 5 - c		
$log_{a} = 5$	$log_e b = -3$	$\log_3 5 - c$		
Change each exponential statement to an equivalent statement involving a logarithm.				
$1.2^{3} = m$	$e^{b} = 9$	$a^4 = 24$		
Find the exact value.				
$log_2 16$, 1		
02		$\log_3 \frac{1}{27}$		

Graphing Logarithmic Functions

Knowing the general form of the graph of the log function is a short cut for graphing.

- 1. Write in its equivalent exponential form
- 2. Find the inverse; *x* is *y* and *y* is *x*, solve for *y*
- 3. Graph the log function's inverse, and reflect the exponential graph across the line of symmetry y = x.

The Natural and Common Logarithm

The Natural Logarithm is a logarithm with the base e. It is written with the abbreviation of ln.

 $y = \ln x$, if and only if $x = e^y$

$$y = \log x$$
, if and only if $x = 10^y$

The logarithm with base 10 is called the **common logarithm** and is denoted by omitting the base

Graph, determine the domain, range and vertical asymptote. Identify the inverse and the domain and range of the inverse.

 $f(x) = -\ln(x - 2)$

Solving Logarithmic Equations

Using Logarithms to Solve and Exponential Equation

Precalculus Lesson 5.5: Properties of Logarithms Mrs. Snow, Instructor

Logarithms have some very useful properties that can be derived directly from the definition and the laws of exponents:

$log_a 1$	=	0
log _a a	=	1
a ^{log_aM}	=	М
log _a a ^r	· _	r

Simplify:

Properties of Logarithms

 $log_{a}MN = log_{a}M + log_{a}N$ $log_{a}\frac{M}{N} = log_{a}M - log_{a}N$ $log_{a}M^{r} = r log_{a}M$

Write the logarithmic expressions as Sum and Difference Logs

Writing Expressions as a Single Logarithm

Change of Base

Using the Change of Base Formula

log ₅ 89	$log_{\sqrt{2}}\sqrt{5}$