
## Calculus Lesson 5.1: The Natural Logarithmic Function: Differentiation Mrs. Snow, Instructor

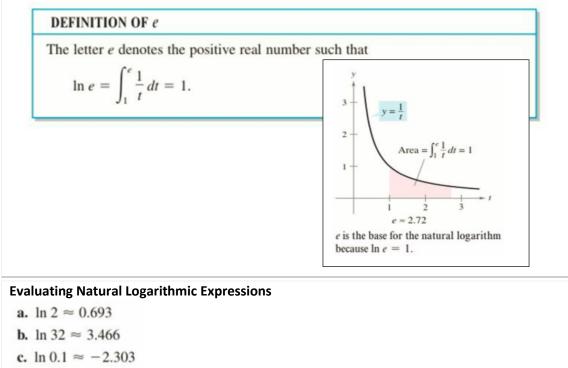


When we were introduced to the General Power Rule, it came with an important disclaimer – it does not apply when n = -1. So, what is the antiderivative of  $f(x) = \frac{1}{x}$ ??? Well, that is where the Second Fundamental Theorem of Calculus comes in to play; it will allow us to define this crazy function!



- 1. The domain is  $(0, \infty)$  and the range is  $(-\infty, \infty)$ .
- 2. The function is continuous, increasing, and one-to-one.
- 3. The graph is concave downward.

## **THEOREM 5.2 LOGARITHMIC PROPERTIES**


If *a* and *b* are positive numbers and *n* is rational, then the following properties are true.

**1.** 
$$\ln(1) = 0$$
  
**2.**  $\ln(ab) = \ln a + \ln b$   
**3.**  $\ln(a^n) = n \ln a$   
**4.**  $\ln\left(\frac{a}{b}\right) = \ln a - \ln b$ 

# Expand the following logarithms

**a.**  $\ln \frac{10}{9}$  **b.**  $\ln \sqrt{3x+2}$  **c.**  $\ln \frac{6x}{5}$ **d.**  $\ln \frac{(x^2+3)^2}{x\sqrt[3]{x^2+1}}$ 

#### The Number e



## **THEOREM 5.3 DERIVATIVE OF THE NATURAL LOGARITHMIC FUNCTION**

Let u be a differentiable function of x.

**1.** 
$$\frac{d}{dx}[\ln x] = \frac{1}{x}, \quad x > 0$$
 **2.**  $\frac{d}{dx}[\ln u] = \frac{1}{u}\frac{du}{dx} = \frac{u'}{u}, \quad u > 0$ 

**Differentiation of Logarithmic Functions** 

**a.** 
$$\frac{d}{dx} [\ln(2x)]$$
  
**b.** 
$$\frac{d}{dx} [\ln(x^2 + 1)]$$
  
**c.** 
$$\frac{d}{dx} [x \ln x]$$


**d.** 
$$\frac{d}{dx}[(\ln x)^3]$$

### Logarithmic Properties as Aids to Differentiation

• Differentiate:

$$f(x) = \ln\sqrt{x+1}$$

$$f(x) = \ln \frac{x(x^2 + 1)^2}{\sqrt{2x^3 - 1}}.$$

