Precalculus Lesson 9.5: The Dot Product Mrs. Snow, Instructor

Purr-pendicular...

The concept of the dot product is used in calculus and in the applications of vectors in physics and engineering.

If $v=a_1i+b_1j=\langle a_1,b_1\rangle$ and $w=a_2i+b_2j=\langle a_2,b_2\rangle$ are vectors, then their dot product, denoted by $v\cdot w$, is defined by

 $v \cdot w = a_1 a_2 + b_1 b_2$ say: "v dot w"

horizontal + varical
product product

Given:

$$v = 2i - 3j$$
 and $w = 5i + 3j$

Find the following dot products:

a)
$$v \cdot w = (2)(5) + (-3)(3) = 10-9 = 1$$

b)
$$w \cdot v = 5(2) + 3(-3) = 10 - 9 = 1$$

The following properties of the Dot Product are useful in solving problems involving the Dot Product:

$$u \cdot v = v \cdot u$$
 Commutative

 $(au) \cdot v = a(u \cdot v) = u \cdot (av)$ associative

 $u \cdot (v + w) = u \cdot v + u \cdot w$ distributive

 $v \cdot v = ||v||^2$
 $0 \cdot v = 0$

The Dot Product Theorem

If we have u and v be vectors with initial points at the origin, the angle θ that is between u and v is $0 < \theta < \pi$.

$$u \cdot v = ||u|| ||v|| \cos \theta$$
$$\cos \theta = \frac{u \cdot v}{||u|| ||v||}$$

Find the angle θ between u=4i-3j and v=2i+5jWith vectors, find Dot poduct & magnitudes

then θ . U:V= 1|U|=N16+9 4(2)+(-3)(5)= = N25=5 9-15= -7 1|V|=N4+25 = N29 $\theta = \cos(-1,259)$

Orthogonal Vectors (a.k.a. perpendicular)

Two vectors v and w are orthogonal, a.k.a. perpendicular, if and only if:

$$v \cdot w = 0$$

Determine whether the vectors pair are perpendicular

$$v = 2i - j \quad and \ w = 3i + 6j$$

$$(2)(3) + (-1)(6) = 0$$

Parallel Vectors

Two vectors v and w are parallel if they are "multiples" of each other.

Determine whether the vectors in each pair are parallel.

$$v = 2i - j$$
 and $w = 6i - 3j$
 $3v = 6i - 35$ Yep | Parallel

$$w = 3i + 4j \text{ and } r = 5i + 2j$$

 $3(x) = 5$ $3(4) \neq 2$ not parallely $x = \frac{3}{3}(4) = 2$

Work

Work equals force times distance:

$$W = F \cdot D$$
.

English units of force is pounds (lbs.)

When the force acting on the object is at an angle, remember to break it into its horizontal and vertical components.

A girl is pulling a wagon with a force of 50 pounds. How much work is done in moving the wagon 100 feet if the handle makes an angle of 30° with the ground?

F- 50/105 300 + 800

$$F = 50(\cos 30i + \sin 30j)$$

= $50(\frac{\sqrt{2}}{2}i + \frac{1}{2}j)$
 $F = 25\sqrt{3}i + 25j$