## Lesson 9.5: The Dot Product

Mrs. Snow, Instructor


The concept of the dot product is used in calculus and in the applications of vectors in physics and engineering.

If $v=a_{1} i+b_{1} j=\left\langle a_{1}, b_{1}\right\rangle$ and $w=a_{2} i+b_{2} j=\left\langle a_{2}, b_{2}\right\rangle$ are vectors, then their dot product, denoted by $\boldsymbol{v} \cdot \boldsymbol{w}$, is defined by

$$
\begin{gathered}
v \cdot w=a_{1} a_{2}+b_{1} b_{2} \\
\text { say: "v dot w" }
\end{gathered}
$$

## Given:

$$
v=2 i-3 j \quad \text { and } \quad w=5 i+3 j
$$

Find the following dot products:
a) $v \cdot w$
b) $w \cdot v$
c) $v \cdot v$
d) $w \cdot w$
e) $\|v\|$
f) $\|w\|$

The following properties of the Dot Product are useful in solving problems involving the Dot Product:

$$
\begin{gathered}
u \cdot v=v \cdot u \\
(a u) \cdot v=a(u \cdot v)=u \cdot(a v) \\
u \cdot(v+w)=u \cdot v+u \cdot w \\
v \cdot v=\|v\|^{2} \\
0 \cdot v=0
\end{gathered}
$$

## The Dot Product Theorem

If we have $u$ and $v$ be vectors with initial points at the origin, the angle $\theta$ that is between $u$ and v is $0<\theta<\pi$.

| $\boldsymbol{u} \cdot \boldsymbol{v}=\\|\boldsymbol{u}\\|\\|\boldsymbol{v}\\| \boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$ |
| :---: |
| $\boldsymbol{\operatorname { c o s } \boldsymbol { \theta } = \frac { \boldsymbol { u } \cdot \boldsymbol { v } } { \\| \boldsymbol { u } \\| \\| \boldsymbol { v } \\| }}$ |
| Find the angle $\theta$ between $u=4 i-3 j$ and $\quad v=2 i+5 j$ |

## Orthogonal Vectors (a.k.a. perpendicular)

Two vectors $v$ and $w$ are orthogonal, a.k.a. perpendicular, if and only if:

$$
v \cdot w=0
$$

Determine whether the vectors pair are perpendicular

$$
v=2 i-j \quad \text { and } w=3 i+6 j
$$

## Parallel Vectors

Two vectors $v$ and $w$ are parallel if they are "multiples" of each other.

Determine whether the vectors in each pair are parallel.

$$
v=2 i-j \quad \text { and } w=6 i-3 j
$$

$$
w=3 i+4 j \text { and } \quad r=5 i+2 j
$$

## Work

Work equals force times distance:

$$
W=F \cdot D
$$

English units of force is pounds (lbs.)

When the force acting on the object is at an angle, remember to break it into its horizontal and vertical components.

A girl is pulling a wagon with a force of 50 pounds. How much work is done in moving the wagon 100 feet if the handle makes an angle of $30^{\circ}$ with the ground?


