Lesson 9.2 Graphs of Polar Equations Mrs. Snow, Instructor

As we studied last section points may be described in polar form or rectangular form. Likewise an equation may be written using either polar or rectangular coordinates. Depending on specific equation, one form may be easier to understand and graph than the other. Below are some common polar graphs and their equations written in both polar and rectangular forms.

To plot points we use polar coordinates and a polar grid.
The points (r, θ) of
radius $=6, \quad$ with $\theta=\frac{5 \pi}{6}$ and
radius $=4, \quad$ with $\theta=\frac{\pi}{4}$

Special graphs:

$\theta=$ constant -a line at angle θ
$r=$ constant -a circle of radius r
Sketch the graph of the equation and express the equation in rectangular coordinates:
$r=3$

$\theta=\frac{\pi}{3}$

Graphing a Polar Equation of a Line:

Some equations can easily be expressed in rectangular coordinates. If this is the case then convert to rectangular coordinates.

Remember the formulas from section 1 that relate x and y to r and θ :
Identify and graph the equation
$r \sin \theta=2$

Circles			
Description	Center at the pole, radius a	Passing through the pole, tangent to the line $\theta=\frac{\pi}{2}$, center on the polar axis, radius a	Passing through the pole, tangent to the polar axis, center on the line $\theta=\frac{\pi}{2}$, radius a
Rectangular equation	$x^{2}+y^{2}=a^{2}, \quad a>0$	$x^{2}+y^{2}= \pm 2 a x, \quad a>0$	$x^{2}+y^{2}= \pm 2 a y, \quad a>0$
Polar equation	$r=a, \quad a>0$	$r= \pm 2 a \cos \theta, \quad a>0$	$r= \pm 2 a \sin \theta, \quad a>0$
Typical graph	y_{4}	y_{4}	y_{4}

Graphing a Circle

Sketch the polar equation (transform the equation
into its rectangular form)
$r=4 \sin \theta$

Other Equations (pg. 581)

Limaçons

$r=a \pm b \sin \theta$
$r=a \pm b \cos \theta$
$(a>0, b>0)$

Orientation depends on the trigonometric function (sine or cosine) and the sign of b.

$$
a<b
$$

limaçon with inner loop

$a=b$ cardioid

$a>b$ dimpled limaçon

Name	Limaçon inner loop	Cardioid	Limaçon no inner loop has a dimple		
Polar Equation	$r=a \pm \mathrm{b} \cos \theta$	$r=a \pm \mathrm{a} \cos \theta$	$r=a \pm \mathrm{b} \cos \theta$		
	$r=a \pm \mathrm{b} \sin \theta$	$r=a \pm \mathrm{a} \sin \theta$	$r=a \pm \mathrm{b} \sin \theta$		
	$a<b$			$\quad a=b$	$a>b$
:---:					

Equations in terms of cosine will be symmetrical about the polar axis (horizontal).
Equations in terms of sine will be symmetrical about the $\frac{\pi}{2}$ axis (vertical).
Cardioid graphs

Cardioid - heart shaped (pg. 581)

graph	$r=2-2 \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$
$a=$	$b=$

The numbers indicate a shape of \qquad equation has sine so along \qquad axis

Negative means:
length $=$ \qquad

Whenever you cannot remember how to graph the polar equation, you can always graph a period of the trig function from $0 \leq \theta<2 \pi$ and transfer the data over to a polar graph. Don't rely on memorizing an equation and associated graph shape, you will want a backup method!!

Table of values (use values for theta that yield friendly values for r):

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{5 \pi}{6}$	π	$\frac{3 \pi}{2}$	2π
$\sin \theta$	0	$1 / 2$	1	$1 / 2$	0	-1	0
$\mathrm{r}=2-2 \sin \theta$	2	1	0	1	2	4	2

Limaçon graphs $\begin{aligned} & r=a \pm b \cos \theta \\ & r=a \pm b \sin \theta \end{aligned}$ if cosine: along polar axis if sine: along $\frac{\pi}{2}$ axis	
a. Limacon no inner loop if : $a>b$	b. Limacon has an inner loop if: $a<b$

Graphing a limaçon without an inner loop

Graphing a limaçon with an inner loop
$r=1+2 \cos \theta$

More Equations

Roses

$r=a \sin n \theta$
$r=a \cos n \theta$
n-leaved if n is odd
$2 n$-leaved if n is even

$r=a \cos 2 \theta$
4-leaved rose
C
$r=a \cos 3 \theta$ 3-leaved rose

$r=a \cos 4 \theta$ 8-leaved rose

$r=a \cos 5 \theta$ 5-leaved rose

Rose with even/odd petals

$n:\left\{\begin{array}{c}\text { odd }=n \text { petals } \\ \text { even }=2 n \text { petals }\end{array}\right.$
$\boldsymbol{r}=\boldsymbol{a} \boldsymbol{\operatorname { s i n }} \boldsymbol{n} \boldsymbol{\theta}$
$a=$ length of petal

$$
r=a \cos n \theta
$$

Graphing a Polar Equation: n -leaved rose (petals)

Graphing a Polar Equation (spiral)

It is the locus of points corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line which rotates with constant angular velocity.

Archimedes Spiral is in the form of

$$
r=a \theta
$$

