Calculus

Lesson 4.1: Antiderivatives and Indefinite Integration Mrs. Snow, Instructor

Find a function F whose derivative is $f(x)=3 x^{2}$

From the knowledge you have of derivatives, you probably knew to work backwards by deciding what steps were taken to come up with the derivative. In other words, you would start to take the inverse of the derivative to find F. The process used to undo a derivative is called the antiderivative.

DEFINITION OF ANTIDERIVATIVE

A function F is an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.

THEOREM 4.1 REPRESENTATION OF ANTIDERIVATIVES

If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval I if and only if G is of the form $G(x)=F(x)+C$, for all x in I where C is a constant.

Notation for Antiderivatives (Integrals)

Basic Integration Rules

$$
\begin{array}{lll}
\frac{\text { Differentiation Formula }}{} & & \\
\frac{d}{d x}[C]=0 & & \int 0 d x=C \\
\frac{d}{d x}[k x]=k & & \int k d x=k x+C \\
\frac{d}{d x}[k f(x)]=k f^{\prime}(x) & & \int k f(x) d x=k \int f(x) d x \\
\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x) & & \int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x \\
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1} & & \int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1 \\
\frac{d}{d x}[\sin x]=\cos x & & \int \cos x d x=\sin x+C \\
\frac{d}{d x}[\cos x]=-\sin x & & \int \sin x d x=-\cos x+C \\
\frac{d}{d x}[\tan x]=\sec ^{2} x & & \int \sec ^{2} x d x=\tan x+C \\
\frac{d}{d x}[\sec x]=\sec ^{2} x \tan x & & \int \csc ^{2} x d x=-\cot x+C \\
\frac{d}{d x}[\cot x]=-\csc ^{2} x & & \int \csc ^{2} x \cot x d x=-\csc x+C \\
\frac{d}{d x}[\csc x]=-\csc ^{d} x \cot x & &
\end{array}
$$

Integrating

$\int 3 x d x \quad \int \frac{1}{x^{3}} d x$
$\int \sqrt{x} d x$
$\int 2 \sin x d x$

More Integrating
$\int d x$

$$
\int(x+2) d x
$$

$\int\left(3 x^{4}-5 x^{2}+x d x\right.$

$$
\int \frac{\sin x}{\cos ^{2} x} d x
$$

Finding a Particular Solution

$\mathrm{F}^{\prime}(\mathrm{x})=\frac{1}{\mathrm{x}^{2}} \quad \quad \operatorname{Find} \mathrm{~F}(\mathrm{x})$ if $\mathrm{F}(1)=0$

Solving a Vertical Motion Problem

- A ball is thrown upward with an initial velocity of 64 feet per second from an initial height of 80 feet.
- Find the position function giving the height s as a function of the time t.
- When does the ball hit the ground?

