In the following exercises, find the integral.
15. $\int(x+3) d x$
28. $\int \frac{x^{2}+2 x-3}{x^{4}} d x$
18. $\int\left(4 x^{3}+6 x^{2}-1\right) d x$
31. $\int y^{2} \sqrt{y} d y$
20. $\int\left(x^{3}-4 x+2\right) d x$
34. $\int 3 d t$
21. $\int\left(x^{3 / 2}+2 x+1\right) d x$
35. $\int(2 \sin x+3 \cos x) d x$
23. $\int \sqrt[3]{x^{2}} d x$
40. $\int \sec y(\tan y-\sec y) d y$
26. $\int \frac{1}{x^{4}} d x$
41. $\int\left(\tan ^{2} y+1\right) d y$
27. $\int \frac{x^{2}+x+1}{\sqrt{x}} d x$

In the following exercises, solve the differential equation.
55. $f^{\prime}(x)=4 x, f(0)=6$
58. $f^{\prime}(s)=6 s-8 s^{3}, f(2)=3$
59. $f^{\prime \prime}(x)=2, f^{\prime}(2)=5, f(2)=10$
60. $f^{\prime \prime}(x)=x^{2}, f^{\prime}(0)=6, f(0)=3$
62. $f^{\prime \prime}(x)=\sin x, f^{\prime}(0)=1, f(0)=6$

In 67, use $a(t)=-32$ feet per second per second as the acceleration due to gravity.
67. A ball is thrown vertically upward from a height of 6 feet with an initial velocity of 60 feet per second. How high will the ball go?

In 73, use $a(t)=-9.8$ meters per second per second as the acceleration due to gravity.
73. A baseball is thrown upward from a height of 2 meters with an initial velocity of 10 meters per second. Determine its maximum height.

