Calculus

Lesson 4.3: Riemann Sums and Definite Integrals
Mrs. Snow, Instructor

No fears, we are finished with summing up rectangular areas. However, we should understand the relationship between the definite integral and approximating the area of a region by using rectangles:

DEFINITION OF DEFINITE INTEGRAL

If f is defined on the closed interval $[a, b]$ and the limit of Riemann sums over partitions Δ

$$
\lim _{\| \Delta \mid \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

exists (as described above), then f is said to be integrable on $[a, b]$ and the limit is denoted by

$$
\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}=\int_{a}^{b} f(x) d x
$$

The limit is called the definite integral of f from a to b. The number a is the lower limit of integration, and the number b is the upper limit of integration.

THEOREM 4.4 CONTINUITY IMPLIES INTEGRABILITY

If a function f is continuous on the closed interval $[a, b]$, then f is integrable on $[a, b]$. That is, $\int_{a}^{b} f(x) d x$ exists.

THEOREM 4.5 THE DEFINITE INTEGRAL AS THE AREA OF A REGION

If f is continuous and nonnegative on the closed interval $[a, b]$, then the area of the region bounded by the graph of f, the x-axis, and the vertical lines $x=a$ and $x=b$ is given by

$$
\text { Area }=\int_{a}^{b} f(x) d x
$$

Definite Integrals

$\int_{1}^{3} 4 d x \quad \int_{0}^{3}(x+2) d x$

DEFINITIONS OF TWO SPECIAL DEFINITE INTEGRALS

1. If f is defined at $x=a$, then we define $\int_{a}^{a} f(x) d x=0$.
2. If f is integrable on $[a, b]$, then we define $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$.

THEOREM 4.6 ADDITIVE INTERVAL PROPERTY

If f is integrable on the three closed intervals determined by a, b, and c, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

THEOREM 4.7 PROPERTIES OF DEFINITE INTEGRALS

If f and g are integrable on $[a, b]$ and k is a constant, then the functions $k f$ and $f \pm g$ are integrable on $[a, b]$, and

1. $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
2. $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$.

Using Additive Interval Property

$\int_{-1}^{1}|x| d x$

Evaluation of a Definite Integral
$\int_{1}^{3}\left(-x^{2}+4 x-3\right) d x$

