Calculus

Lesson 3.5: Limits at Infinity Mrs. Snow, Instructor

When you find there are limits at infinity

In this section we will look at the "end behavior" of a function on an infinite interval.

DEFINITION OF A HORIZONTAL ASYMPTOTE

The line $y=L$ is a horizontal asymptote of the graph of f if

$$
\lim _{x \rightarrow-\infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow \infty} f(x)=L .
$$

THEOREM 3.10 LIMITS AT INFINITY

If r is a positive rational number and c is any real number, then

$$
\lim _{x \rightarrow \infty} \frac{c}{x^{r}}=0 .
$$

Furthermore, if x^{r} is defined when $x<0$, then

$$
\lim _{x \rightarrow-\infty} \frac{c}{x^{r}}=0 .
$$

Finding a Limit at infinity

$\lim _{x \rightarrow \infty}\left(5-\frac{2}{x^{2}}\right)$.

$$
\lim _{x \rightarrow \infty} \frac{2 x-1}{x+1}
$$

GUIDELINES FOR FINDING LIMITS AT $\pm \infty$ OF RATIONAL FUNCTIONS

1. If the degree of the numerator is less than the degree of the denominator, then the limit of the rational function is 0 .
2. If the degree of the numerator is equal to the degree of the denominator, then the limit of the rational function is the ratio of the leading coefficients.
3. If the degree of the numerator is greater than the degree of the denominator, then the limit of the rational function does not exist.

In regard to \#3, when you encounter an indeterminate form you should divide the numerator and denominator by the highest power of x in the denominator.

$$
\lim _{x \rightarrow \infty} \frac{2 x+5}{3 x^{2}+1} \quad \lim _{x \rightarrow \infty} \frac{2 x^{2}+5}{3 x^{2}+1} \quad \lim _{x \rightarrow \infty} \frac{2 x^{3}+5}{3 x^{2}+1}
$$

A Function with Two Horizontal Asymptotes

a. $\lim _{x \rightarrow \infty} \frac{3 x-2}{\sqrt{2 x^{2}+1}}$
b. $\lim _{x \rightarrow-\infty} \frac{3 x-2}{\sqrt{2 x^{2}+1}}$

Limits Involving Trig Functions	$\lim _{x \rightarrow \infty} \frac{\sin x}{x}$
$\lim _{x \rightarrow \infty} \sin x$	

Finding Infinite Limits at Infinity
Many functions do not approach a finite limit as x increases or decreases without bound. As an example, polynomial functions do not have a finite limit at infinity.

$\lim _{x \rightarrow \infty} x^{3}$	$\lim _{x \rightarrow-\infty} x^{3}$

When evaluating a rational function, use long division to rewrite the improper rational function as the sum of a polynomial and a rational function.

$\lim _{x \rightarrow \infty} \frac{2 x^{2}-4 x}{x+1}$	$\lim _{x \rightarrow-\infty} \frac{2 x^{2}-4 x}{x+1}$

