Calculus

Lesson 2.5: Implicit Differentiation Mrs. Snow, Instructor

Implicit vs. Explicit: What's the difference? Up to this point, most functions we have dealt with are expressed in **explicit form**, that is the variable y is **explicitly** written as a function of x, e.g.

 $y=rac{1}{x}$. Some functions, however, are **implied** by a given equation. An implicit form of the previous example is: xy=1 Note, the implicit form is where the dependent variable is not isolated on one side of the equation. So, no problem we simply solve the equation for y and then take the derivative.

Woops! The problem is that not all equations that we work with can be solved explicitly for y as a function of x. For example, how do we find $\frac{dy}{dx}$ for the equation: $x^2 - 2y^3 + 4y = 2$????

Soooooo, to understand how to find dy/dx implicitly, you must realize that the differentiation is taking place with respect to x. This means that when you differentiate terms involving x alone, you can differentiate as usual. However, when you differentiate terms involving y, you must apply the Chain Rule, because you are assuming that y is defined implicitly as a differentiable function of x.

Differentiate with respect to x : $\frac{d}{dx}x^{3}$ Variables match	$\frac{d}{dx} \left[y^3 \right]$ Variables don't match: use power rule and chain rule
$\frac{d}{dx}[x+3y]$	$\frac{d}{dx} \left[xy^2 \right]$

GUIDELINES FOR IMPLICIT DIFFERENTIATION

- **1.** Differentiate both sides of the equation with respect to x.
- 2. Collect all terms involving dy/dx on the left side of the equation and move all other terms to the right side of the equation.
- **3.** Factor dy/dx out of the left side of the equation.
- **4.** Solve for dy/dx.

Implicit Differentiation: Find $\frac{dy}{dx}$ given that $y^3 + y^2 - 5y - x^2 = -4$

Finding the slope of a graph implicitly Determine the slope of the tangent line to the graph of $x^2+4y^2=4$ at the point $\left(\sqrt{2},\frac{-1}{\sqrt{2}}\right)$.

Determine the slope of the graph of $3(x^2 + y^2)^2 = 100xy$ at the point (3,1).

Find the second derivative Implicitly	
Given $x^2 + y^2 = 25$, find $\frac{d^2y}{dx^2}$	
Finding a tangent line to a graph	
Finding a tangent line to a graph Find the tangent line to the graph given by $x^2(x^2+y^2)=y^2$ at $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$	