Derivatives as Rates of Change

In \#1-6, the position s at time $t(t \geq 0)$ of a particle P is given, s being measured in meters and t in seconds.
a. Find the velocity v.
b. Find the acceleration a of P at time t.
c. When is P moving to the right and when to the left?
d. Find the positions and accelerations of P at the times when it is instantaneously at rest.
e. Indicate the motion of P in a diagram.

1. $s=2+4 t-t^{2}$
2. $s=2 t^{3}-9 t^{2}+12 t$
3. $s=(t-2)^{2}\left(t^{2}-4 t+2\right)$
4. $s=t^{2}-6 t+5$
5. $s=2-9 t+6 t^{2}-t^{3}$
6. $s=t^{4}-8 t^{3}+18 t^{2}-16 t$
7. A rock dropped into still water sends out concentric ripples. If the radius of the out ripple increases at the rate of $2 \mathrm{ft} / \mathrm{s}$, how fast is the area of the disturbed surface increasing when it is 6 ft in diameter?
8. Helium is being pumped into a spherical rubber balloon at the rate of 200 cubic inches per second. At what rate is the radius increasing when the balloon is 40 inches in diameter?
9. A boat is being pulled toward a dock by means of a cable attached to a windlass 9 feet above the deck of the boat. The cable is being wound in at the rate of 6 feet per second. How fast is the boat approaching the dock when its horizontal distance to the dock is 12 feet?

10. The foot of a 13-foot ladder leaning against a high wall is pulled away from the wall at the rate of 4 feet per minute. How fast is the top of the ladder moving when it is $(a) 12$ feet above the ground? (b) 5 feet above the ground?
11. Let A be the area of a variable circle having radius r at time t and circumference C. Show that $\frac{d A}{d t}=C \frac{d r}{d t}$
