3.6 Curve Sketching: Using Derivatives in Graphing \& Concavity \& the Second Derivative

Analyze and sketch the graph. Include intercepts, asymptotes, increasing and decreasing behaviors, and critical points. Find the intervals on which the graph of f is concave upward and concave downward, and find the inflection points of the graph. Then, sketch the graph distinguishing between the concave-upward and concavedownward parts.
25. $f(x)=x^{3}-3 x^{2}+3$
2. $f(x)=8 x^{2}-x^{4}$
17. $y=\frac{x^{2}-6 x+12}{x-4}$
11. $f(x)=\frac{2 x}{x^{2}-1}$
7. $g(x)=\frac{x^{2}}{x^{2}+3}$
41. $h(x)=2 x-\tan x \quad-\frac{\pi}{2}<x<\frac{\pi}{2}$

Find and classify the relative extrema of f if there are any. You need not graph f.
7. $f(x)=\frac{3-x}{1+x}$
8. $f(x)=\frac{x+1}{x-1}$
9. $f(x)=\frac{x^{2}}{x+1}$
10. $f(x)=\frac{x}{x^{2}+1}$

Create a function whose graph has the given characteristics.
67. Vertical asymptote: $\mathrm{x}=5$ and Horizontal asymptote: $\mathrm{y}=0$
68. Vertical asymptote: $x=2, x=-2$ and Horizontal asymptote: $y=3$

Use the second-derivative test to find the relative maxima and relative minima of g.
13. $g(x)=x+\frac{2}{\sqrt{x}}$
14. $g(x)=\frac{x^{3}+4}{x^{2}}$

