In 1-2, find the slope of the tangent line to the graph of the function at the given point.

1. $f(x) = 8 - x^2$, (2,4) 2. $h(t) = t^2 + 5$, (-3,14)

In 3-5, find the derivative by the limit process.

3.
$$f(x) = 1 - 2x^2$$

4. $f(x) = \frac{1}{x+1}$
5. $f(x) = \frac{2}{\sqrt{x}}$

In 6-7, find an equation of the tangent line to the graph of f at the given point.

6. $f(x) = x^3$, (-2,-8) 7. $f(x) = \sqrt{x-6}$, (10,2)

In 8-9, use the alternative form of the derivative to find the derivative at x=c (if it exists).

8.
$$g(x) = 2x(x-1), c = 1$$

9. $g(x) = \frac{3}{x}, c = 2$

In 10, find the derivatives from the left and from the right at x=2 (if they exist). Is the function differentiable at x=2?

10. f(x) = |x-2|

In 11-18, find the derivative of the function.

11. $y = x^8$ 12. $f(x) = \sqrt[7]{x}$ 13. $f(x) = 2x^5 - x^3 + 5x$ 14. $y = x^2 - \frac{1}{4}\sin x$ 15. $y = \frac{3}{(-2x)^3} + 3\cos x$ 16. $f(x) = x^3 + 7 - 5x^{-2}$ 17. $f(x) = 4x + \frac{2}{x^2}$ 18. $y = 3x(2x^2 + 1)$ In 19-20, find an equation of the tangent line to the graph of f at the given point.

19.
$$f(x) = -\frac{1}{2} + \frac{5}{3}x^3$$
, $\left(0, -\frac{1}{2}\right)$
20. $y = 2x^3 - x$, (1,1)

In 21-22, determine the point(s) (if any) at which the graph of the function has a horizontal tangent line.

21. $y = 2x^4 - 16x^2 + 3$ 22. $y = 4x^2 + 1$

In 23, use the position function

- $s(t) = -16t^2 + s_0$ for free-falling objects.
 - 23. A silver dollar is dropped from the top of a building that is 862 feet tall.
 - Determine the position and velocity functions for the coins.
 - Determine the average velocity on the interval [1,2].
 - c. Find the instantaneous velocities when t=1 and t=2.
 - d. Find the time required for the coin to reach ground level.
 - e. Find the velocity of the coin at impact.

In 24-32, find the derivative using the product or the quotient rule.

24.
$$f(x) = (x^2 - 1)(x^3 - 2x)$$

25. $f(x) = 2x^2 \cos x$
26. $g(x) = \frac{\sin x}{x^3}$
27. $g(t) = \frac{t^2 - 3}{2t + 5}$

28.
$$f(x) = \frac{3 - x - x^{3}}{2x^{2} + 1}$$

29.
$$f(x) = \frac{1 - \frac{3}{x}}{x + 2}$$

30.
$$f(x) = -x + 2\tan x$$

31.
$$f(x) = 2x\cos x + x^{2}\sin x$$

32.
$$g(t) = \sqrt[3]{t} + 5\sec t$$

~

In 33-35, Find the second derivative of the function.

33.
$$f(x) = \frac{x^2 + 4x - 1}{3x}$$

34.
$$f(x) = 3\cos x$$

35.
$$f(x) = \frac{2x}{x - 1}$$

In 36-38, find f'(x) and f'(c)36. $f(x) = (x^2 - 3x)(2x^3 + 3x + 1)$ c = 137. $f(x) = \frac{x^2 - 4}{x - 1}$ c = 238. $f(x) = x \cos x$ $c = \frac{\pi}{2}$