Calculus Lesson 2.4 The Chain Rule Mrs. Snow, Instructor

How do you take the derivative of: $F(x) = \sqrt{x^2 + 1}$???

Well, good question, maybe no answer? The differentiation formulas we have seen so far will not enable us to calculate F'(x). F is a composite function. If we let the outside part be $y = f(u) = \sqrt{u}$ and the inside part be $u = g(x) = x^2 + 1$, we can then write:

 $y = F(x) = f(g(x)) = f \circ g$. So!!! It would be nice to have a rule that tells us how to find the derivative of $F = f \circ g$. This is where the **chain rule** comes into play and it will find the derivative of F in terms of f and g! Fact is, the **chain rule** is one of the most important of the differentiation rules.

Using the Chain Rule:

$$y = \left(x^2 + 1\right)^3$$

THEOREM 2.11 THE GENERAL POWER RULE

If $y = [u(x)]^n$, where *u* is a differentiable function of *x* and *n* is a rational number, then

$$\frac{dy}{dx} = n[u(x)]^{n-1}\frac{du}{dx}$$

or, equivalently,

$$\frac{d}{dx}[u^n] = n u^{n-1} u'.$$

Applying the General Power Rule: Find the derivative:

$$f(x) = \left(3x - 2x^2\right)^3$$

Differentiating Functions Involving Radicals

Find all points on the graph of f(x) for which f'(x)=0 and those for which f'(x) does not exist. $f(x) = \sqrt[3]{(x^2 - 1)^2}$

Differentiating Quotients with Constant Numerators

$$g(t) = \frac{-7}{\left(2t-3\right)^2}$$

Simplifying by Factoring Out the Least Powers
$$f(x) = x^2 \sqrt{1-x^2}$$

Simplifying the Derivative of a Quotient

$$f(x) = \frac{x}{\sqrt[3]{x^2 + 4}}$$

Simplifying the Derivative of a Power

$$y = \left(\frac{3x-1}{x^2+3}\right)^2$$

Trigonometric Functions and the Chain Rule The "Chain Rule versions" of the derivatives of the six trigonometric functions are as follows.

$$\frac{d}{dx}[\sin u] = (\cos u)u' \qquad \frac{d}{dx}[\cos u] = -(\sin u)u'$$
$$\frac{d}{dx}[\tan u] = (\sec^2 u)u' \qquad \frac{d}{dx}[\cot u] = -(\csc^2 u)u'$$
$$\frac{d}{dx}[\sec u] = (\sec u \tan u)u' \qquad \frac{d}{dx}[\csc u] = -(\csc u \cot u)u'$$

Applying the Chain Rule to Trigonometric Functions			
a. $y = \sin 2x$	b. $y = \cos(x - 1)$ c. $y = \tan 3x$		
Parentheses and Trigonometric Functions			
a. $y = \cos 3x^2$	b. $y = (\cos 3)x^2$ c. $y = \cos(3x)^2$		
d. $y = \cos^2 x$	e. $y = \sqrt{\cos x}$		
Repeated Application of the Chain Rule			
$f(t) = \sin^3 4t$			

Tangent Line of a Trigonometric Function

Find an equation of the tangent line to the graph of f(x) at the point $(\pi, 1)$. Then determine all values of x in the interval $(0, 2\pi)$ at which the graph of f has a horizontal tangent. $f(x) = 2 \sin x + \cos 2x$

SUMMARY OF DIFFERENTIATION RULES

General Differentiation Rules	Let f , g , and u be differentiable functions of x .		
	Constant Multiple Rule:	Sum or Difference Rule:	
	$\frac{d}{dx}[cf] = cf'$	$\frac{d}{dx}[f \pm g] = f' \pm g'$	
	Product Rule:	Quotient Rule:	
	$\frac{d}{dx}[fg] = fg' + gf'$	$\frac{d}{dx} \left\lfloor \frac{f}{g} \right\rfloor = \frac{gf' - fg'}{g^2}$	
Derivatives of Algebraic	Constant Rule:	(Simple) Power Rule:	
Functions	$\frac{d}{dx}[c] = 0$	$\frac{d}{dx}[x^n] = nx^{n-1}, \frac{d}{dx}[x] = 1$	
Derivatives of Trigonometric Functions	$\frac{d}{dx}[\sin x] = \cos x$	$\frac{d}{dx}[\tan x] = \sec^2 x$ $\frac{d}{dx}[\sec x] = \sec x \tan x$	
	$\frac{d}{dx}[\cos x] = -\sin x$	$\frac{d}{dx}[\cot x] = -\csc^2 x \frac{d}{dx}[\csc x] = -\csc x \cot x$	
Chain Rule	Chain Rule:	General Power Rule:	
	$\frac{d}{dx}[f(u)] = f'(u) u'$	$\frac{d}{dx}[u^n] = nu^{n-1}u'$	