Calculus

Lesson 2.4 The Chain Rule
Mrs. Snow, Instructor

How do you take the derivative of: $F(x)=\sqrt{x^{2}+1}$???
Well, good question, maybe no answer? The differentiation formulas we have seen so far will not enable us to calculate $F^{\prime}(x) . F$ is a composite function. If we let the outside part be $y=$ $f(u)=\sqrt{u}$ and the inside part be $u=g(x)=x^{2}+1$, we can then write:
$y=F(x)=f(g(x))=f$ o g. So!!! It would be nice to have a rule that tells us how to find the derivative of $F=f \circ g$. This is where the chain rule comes into play and it will find the derivative of F in terms of f and g ! Fact is, the chain rule is one of the most important of the differentiation rules.

THEOREM 2.10 THE CHAIN RULE

If $y=f(u)$ is a differentiable function of u and $u=g(x)$ is a differentiable function of x, then $y=f(g(x))$ is a differentiable function of x and

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

or, equivalently,

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x) .
$$

$y=f(g(x))$
$u=g(x)$
$y=f(u)$
a. $y=\frac{1}{x+1}$
b. $y=\sin 2 x$
c. $y=\sqrt{3 x^{2}-x+1}$
d. $y=\tan ^{2} x$

Using the Chain Rule:

$y=\left(x^{2}+1\right)^{3}$

THEOREM 2.11 THE GENERAL POWER RULE

If $y=[u(x)]^{n}$, where u is a differentiable function of x and n is a rational number, then

$$
\frac{d y}{d x}=n[u(x)]^{n-1} \frac{d u}{d x}
$$

or, equivalently,

$$
\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime}
$$

Applying the General Power Rule:

Find the derivative:
$f(x)=\left(3 x-2 x^{2}\right)^{3}$

Differentiating Functions Involving Radicals
Find all points on the graph of $f(x)$ for which $f^{\prime}(x)=0$ and those for which $f^{\prime}(x)$ does not exist.
$f(x)=\sqrt[3]{\left(x^{2}-1\right)^{2}}$

Differentiating Quotients with Constant Numerators
$g(t)=\frac{-7}{(2 t-3)^{2}}$

Simplifying by Factoring Out the Least Powers

$f(x)=x^{2} \sqrt{1-x^{2}}$

Simplifying the Derivative of a Quotient
$f(x)=\frac{x}{\sqrt[3]{x^{2}+4}}$

Simplifying the Derivative of a Power
$y=\left(\frac{3 x-1}{x^{2}+3}\right)^{2}$

Trigonometric Functions and the Chain Rule

The "Chain Rule versions" of the derivatives of the six trigonometric functions are as follows.

$$
\begin{array}{llrl}
\frac{d}{d x}[\sin u] & =(\cos u) u^{\prime} & \frac{d}{d x}[\cos u] & =-(\sin u) u^{\prime} \\
\frac{d}{d x}[\tan u] & =\left(\sec ^{2} u\right) u^{\prime} & \frac{d}{d x}[\cot u] & =-\left(\csc ^{2} u\right) u^{\prime} \\
\frac{d}{d x}[\sec u] & =(\sec u \tan u) u^{\prime} & \frac{d}{d x}[\csc u]=-(\csc u \cot u) u^{\prime}
\end{array}
$$

Applying the Chain Rule to Trigonometric Functions

a. $y=\sin 2 x$
b. $y=\cos (x-1)$
c. $y=\tan 3 x$

Parentheses and Trigonometric Functions

a. $y=\cos 3 x^{2}$
b. $y=(\cos 3) x^{2}$
c. $y=\cos (3 x)^{2}$
d. $y=\cos ^{2} x$
e. $y=\sqrt{\cos x}$

Repeated Application of the Chain Rule
$f(t)=\sin ^{3} 4 t$

Tangent Line of a Trigonometric Function

Find an equation of the tangent line to the graph of $f(x)$ at the point $(\pi, 1)$.
Then determine all values of x in the interval $(0,2 \pi)$ at which the graph of f has a horizontal tangent. $f(x)=2 \sin x+\cos 2 x$

SUMMARY OF DIFFERENTIATION RULES

General Differentiation Rules Let f, g, and u be differentiable functions of x.

Constant Multiple Rule:
$\frac{d}{d x}[c f]=c f^{\prime}$
Product Rule:
$\frac{d}{d x}[f g]=f g^{\prime}+g f^{\prime}$
Derivatives of Algebraic
Functions

Derivatives of Trigonometric
Functions

Chain Rule
Chain Rule:
$\frac{d}{d x}[f(u)]=f^{\prime}(u) u^{\prime}$
Constant Rule:
$\frac{d}{d x}[c]=0$
$\frac{d}{d x}[\sin x]=\cos x$
$\frac{d}{d x}[\cos x]=-\sin x$

Sum or Difference Rule:
$\frac{d}{d x}[f \pm g]=f^{\prime} \pm g^{\prime}$
Quotient Rule:
$\frac{d}{d x}\left[\frac{f}{g}\right]=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$
(Simple) Power Rule:
$\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}, \quad \frac{d}{d x}[x]=1$
$\frac{d}{d x}[\tan x]=\sec ^{2} x \quad \frac{d}{d x}[\sec x]=\sec x \tan x$
$\frac{d}{d x}[\cot x]=-\csc ^{2} x \quad \frac{d}{d x}[\csc x]=-\csc x \cot x$
General Power Rule:
$\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime}$

