Precalculus

Lesson 4.6: Polynomial and Rational Inequalities

Mrs. Snow, Instructor

This section covers the processes to graph inequalities of polynomials and rational functions

Solution

- 1. Write the inequality so that a polynomial/rational expression is on the left side and 0 is on the right side
- 2. Determine the real zeros (x-intercepts) of *f* and any real numbers for which the expression is undefined.
- 3. Using the zeros and undefined values, divide the real number line into intervals
 - a. Is the inequality <, >, \le , $or \ge$ at zero?
 - b. Equality means a point on the zero
 - c. Not equal means a circle
- 4. Select a number in each interval, evaluate at that number. Focus on the sign of the factors and the overall outcome of \pm . Don't worry about the exact numerical answer.

Solve the inequalities algebraically and graph the solution

$x^4 > x$	* I C L
$X^{4}-X>0$ $X(X^{3}-1)=0$ $(X)(X-1)(X^{2}+X+1)$ treat as eg find intera	
X = 0 $X = 1$	$x^2+x+1=0$ b^2-4ac No real sol. $1-4(1X1)=-3$ discriminant
Cactors 12	2 test points regative X>0 Internals have Circles
x - +	+ Sign of factor worns + fest points
+ + + +	(+ Sign of Punch on
Ans (-0,6) U (1,00)	Internals >0 are Solutions

Solutions 2050 $\frac{4x+5}{x+2} \ge 3$ interals have both 4×+5 -1+2 -320 Careful Denominator has a discontinuity so Value has a circle Toot PJ X-1=0 Remember if inequality had been & we would work ext regative sign interval for the solution interval

textbook pg. 240

SUMMARY Steps for Solving Polynomial and Rational Inequalities Algebraically

STEP 1: Write the inequality so that a polynomial or rational expression f is on the left side and zero is on the right side in one of the following forms:

$$f(x) > 0$$
 $f(x) \ge 0$ $f(x) < 0$ $f(x) \le 0$

For rational expressions, be sure that the left side is written as a single quotient and find the domain of f.

- **STEP 2:** Determine the real numbers at which the expression f equals zero and, if the expression is rational, the real numbers at which the expression f is undefined.
- STEP 3: Use the numbers found in Step 2 to separate the real number line into intervals.
- Step 4: Select a number in each interval and evaluate f at the number.
 - (a) If the value of f is positive, then f(x) > 0 for all numbers x in the interval.
 - (b) If the value of f is negative, then f(x) < 0 for all numbers x in the interval.

If the inequality is not strict (\ge or \le), include the solutions of f(x) = 0 that are in the domain of f in the solution set. Be careful to exclude values of x where f is undefined.