Precalculus

Lesson 4.6: Polynomial and Rational Inequalities

Mrs. Snow, Instructor

This section covers the processes to graph inequalities of polynomials and rational functions

Solution

1. Write the inequality so that a polynomial/rational expression is on the left side and 0 is on the right side
2. Determine the real zeros (x-intercepts) of f and any real numbers for which the expression is undefined.
3. Using the zeros and undefined values, divide the real number line into intervals
a. Is the inequality $<,>, \leq$, or \geq at zero?
b. Equality means a point on the zero
c. Not equal means a circle
4. Select a number in each interval, evaluate at that number. Focus on the sign of the factors and the overall outcome of \pm. Don't worry about the exact numerical answer.

Solve the inequalities algebraically and graph the solution
$x^{4}>x$

$$
\frac{4 x+5}{x+2} \geq 3
$$

textbook pg. 240

SUMMARY Steps for Solving Polynomial and Rational Inequalities Algebraically

Step 1: Write the inequality so that a polynomial or rational expression f is on the left side and zero is on the right side in one of the following forms:

$$
f(x)>0 \quad f(x) \geq 0 \quad f(x)<0 \quad f(x) \leq 0
$$

For rational expressions, be sure that the left side is written as a single quotient and find the domain of f.
STEP 2: Determine the real numbers at which the expression f equals zero and, if the expression is rational, the real numbers at which the expression f is undefined.
Step 3: Use the numbers found in Step 2 to separate the real number line into intervals.
Step 4: Select a number in each interval and evaluate f at the number.
(a) If the value of f is positive, then $f(x)>0$ for all numbers x in the interval.
(b) If the value of f is negative, then $f(x)<0$ for all numbers x in the interval.

If the inequality is not strict $(\geq$ or \leq), include the solutions of $f(x)=0$ that are in the domain of f in the solution set. Be careful to exclude values of x where f is undefined.

