1.5 Infinite Limits Homework

Determine whether $f(x)$ approaches ∞ or $-\infty$ as x approaches -2 from the left and from the right.

1. $f(x)=2\left|\frac{x}{x^{2}-4}\right|$

2. $f(x)=\frac{1}{x+2}$

3. $f(x)=\tan \frac{\pi x}{4}$

Find the vertical asymptotes (if any) of the graph of the function.
9. $f(x)=\frac{1}{x^{2}}$
12. $g(x)=\frac{2+x}{x^{2}(1-x)}$
15. $g(t)=\frac{t-1}{t^{2}+1}$
16. $h(x)=\frac{2 x-3}{x^{2}-25}$
18. $f(x)=\sec \pi x$
21. $f(x)=\frac{x}{x^{2}+x-2}$
24. $h(x)=\frac{x^{2}-4}{x^{3}+2 x^{2}+x+2}$
27. $s(t)=\frac{t}{\sin t}$

Determine whether the graph of the function has a vertical asymptote or a removable discontinuity at $x=-1$. Graph the function using a graphing calculator to confirm your answer.
1.5 Infinite Limits Homework
29. $f(x)=\frac{x^{2}-1}{x+1}$
30. $f(x)=\frac{x^{2}-6 x-7}{x+1}$
32. $f(x)=\frac{\sin (x+1)}{x+1}$

Find the limit.
33. $\lim _{x \rightarrow+^{+}} \frac{x-3}{x-2}$
36. $\lim _{x \rightarrow 4^{-}} \frac{x^{2}}{x^{2}+16}$
39. $\lim _{x \rightarrow 1} \frac{x^{2}-x}{\left(x^{2}+1\right)(x-1)}$
42. $\lim _{x \rightarrow 0^{-}}\left(x^{2}-\frac{1}{x}\right)$

Find the limit.
45. $\lim _{x \rightarrow \pi} \frac{\sqrt{x}}{\csc x}$
48. $\lim _{x \rightarrow \frac{1}{2}} x^{2} \tan \pi x$

Use a graphing calculator to graph the function and determine the one-sided limit.
49. $f(x)=\frac{x^{2}+x+1}{x^{3}-1}$
50. $f(x)=\frac{x^{3}-1}{x^{2}+x+1}$ $\lim _{x \rightarrow 1^{+}} f(x)$ $\lim _{x \rightarrow 1^{1}} f(x)$
52. $f(x)=\sec \frac{\pi x}{6}$
$\lim _{x \rightarrow 3^{+}} f(x)$

Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
67. If $p(x)$ is a polynomial, then the graph of the function given by $f(x)=\frac{p(x)}{x-1}$ has a vertical asymptote at $x=1$.
68. The graph of a rational function has at least one vertical asymptote.
69. The graphs of polynomial functions have no vertical asymptotes.
70. If f has a vertical asymptote at $x=0$, then f is undefined at $x=0$.

