Use the Product Rule to differentiate the function.

1. $f(x)=\left(x^{2}+1\right)\left(x^{2}-2 x\right)$
2. $\sqrt[3]{t}\left(t^{2}+4\right)$
3. $f(x)=x^{3} \cos x$

Use the Quotient Rule to differentiate the function.
7. $f(x)=\frac{x}{x^{2}+1}$
10. $h(s)=\frac{s}{\sqrt{s}-1}$
11. $g(x)=\frac{\sin x}{x^{2}}$
8. $g(t)=\frac{t^{2}+2}{2 t-7}$

Find $f^{\prime}(x)$ and $f^{\prime}(c)$
13. $f(x)=\left(x^{3}-3 x\right)\left(2 x^{2}+3 x+5\right)$

$$
c=0
$$

15. $f(x)=\frac{x^{2}-4}{x-3}$

$$
c=1
$$

17. $f(x)=x \cos x$
$c=\frac{\pi}{4}$
Complete the table without using the Quotient Rule.

Function	Rewrite	Differentiate	Simplify
$19 . y=\frac{x^{2}+2 x}{3}$			
$y=\frac{7}{3 x^{3}}$			
21.			

Find the derivative of the algebraic function:
25. $f(x)=\frac{3-2 x-x^{2}}{x^{2}-1} \quad$ 33. $f(x)=\frac{2-\frac{1}{x}}{x-3} \quad$ 34. $\quad g(x)=x^{2}\left(\frac{2}{x}-\frac{1}{x+1}\right)$

Find the derivative of the trigonometric function.
39. $f(t)=t^{2} \sin t$
43. $f(x)=-x+\tan x$
45. $g(t)=\sqrt[4]{t}+8 \sec t$
49. $y=-\csc x-\sin x$
53. $f(x)=2 x \sin x+x^{2} \cos x$

Find an equation of the tangent line to the graph of f at the given point, then use a graphing calculator to graph the function and its tangent line at the point, and then use the derivative feature of your calculator to confirm your results.
64. $f(x)=(x-1)\left(x^{2}-2\right)$;
67. $f(x)=\tan x ; \quad\left(\frac{\pi}{4}, 1\right)$

Prove the following differentiation rules.
88. a) $\frac{d}{d x}(\sec x)=\sec x \tan x$
b) $\frac{d}{d x}(\csc x)=-\csc x \cot x$

Find the second derivative of the function.
95. $f(x)=\frac{x}{x-1}$
96. $f(x)=\frac{x^{2}+2 x-1}{x}$
97. $f(x)=3 \sin x$

Acceleration
116. An automobile's velocity starting from rest is $v(t)=\frac{100 t}{2 t+15}$ where v is measured in feet per second. Find the acceleration at (a) 5 seconds, (b) 10 seconds, and (c) 20 seconds.

