Use the Product Rule to differentiate the function.

1.
$$f(x) = (x^2 + 1)(x^2 - 2x)$$

$$3. \qquad \sqrt[3]{t}\left(t^2+4\right)$$

5.
$$f(x) = x^3 \cos x$$

Use the Quotient Rule to differentiate the function.

7.
$$f(x) = \frac{x}{x^2 + 1}$$
 10. $h(s) = \frac{s}{\sqrt{s} - 1}$

11.
$$g(x) = \frac{\sin x}{x^2}$$
 8. $g(t) = \frac{t^2 + 2}{2t - 7}$

Find f'(x) and f'(c)

13.
$$f(x) = (x^3 - 3x)(2x^2 + 3x + 5)$$
 $c = 0$

15.
$$f(x) = \frac{x^2 - 4}{x - 3}$$
 $c = 1$

17.
$$f(x) = x \cos x \qquad \qquad c = \frac{\pi}{4}$$

Complete the table without using the Quotient Rule.

Function	Rewrite	Differentiate	Simplify
19. $y = \frac{x^2 + 2x}{3}$			
$y = \frac{7}{3x^3}$			

Find the derivative of the algebraic function:

25.
$$f(x) = \frac{3 - 2x - x^2}{x^2 - 1}$$
 33. $f(x) = \frac{2 - \frac{1}{x}}{x - 3}$ 34. $g(x) = x^2 \left(\frac{2}{x} - \frac{1}{x + 1}\right)$

Find the derivative of the trigonometric function.

39.
$$f(t) = t^2 \sin t$$
 43. $f(x) = -x + \tan x$ 45. $g(t) = \sqrt[4]{t} + 8 \sec t$
49. $y = -\csc x - \sin x$ 53. $f(x) = 2x \sin x + x^2 \cos x$

Find an equation of the tangent line to the graph of *f* at the given point, then use a graphing calculator to graph the function and its tangent line at the point, and then use the derivative feature of your calculator to confirm your results.

64.
$$f(x) = (x-1)(x^2-2);$$
 (0,2) 67. $f(x) = \tan x;$ $(\frac{\pi}{4}, 1)$

Prove the following differentiation rules.

88. a)
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
 b) $\frac{d}{dx}(\csc x) = -\csc x \cot x$

Find the second derivative of the function.

95.
$$f(x) = \frac{x}{x-1}$$
 96. $f(x) = \frac{x^2 + 2x - 1}{x}$ 97. $f(x) = 3\sin x$

Acceleration

116. An automobile's velocity starting from rest is $v(t) = \frac{100t}{2t+15}$ where v is measured in feet per second. Find the acceleration at (a) 5 seconds, (b) 10 seconds, and (c) 20 seconds.