In 1-13, find the derivative of the function.
3. $y=8$
5. $y=x^{6}$
9. $f(x)=\sqrt[5]{x}$
12. $g(x)=3 x-1$
15. $g(x)=x^{2}+4 x^{3}$
18. $f(x)=2 x^{3}-x^{2}+3 x$
21. $y=x^{2}-\frac{1}{2} \cos x$
24. $y=\frac{5}{(2 x)^{3}}+2 \cos x$
39. $f(x)=x^{2}+5-3 x^{-2}$
42. $f(x)=x+\frac{1}{x^{2}}$
45. $y=x\left(x^{2}+1\right)$
48. $f(x)=\sqrt[3]{x}+\sqrt[5]{x}$
51. $f(x)=6 \sqrt{x}+5 \cos x$

In 14-16, find an equation of the tangent line to the graph of f at the given point.
33. $f(x)=-\frac{1}{2}+\frac{7}{5} x^{3},\left(0,-\frac{1}{2}\right)$
36. $f(x)=3(5-x)^{2},(5,0)$
54. $y=x^{3}+x,(1,2)$

In 17-18, determine the point(s) (if any) at which the graph of the function has a horizontal tangent line.
57. $y=x^{4}-8 x^{2}+2$
60. $y=x^{2}+1$

In 19-20, use the position function $s(t)=-16 t^{2}+v_{0} t+s_{0}$ for free-falling objects.
93. A silver dollar is dropped from the top of a building that is 1362 feet tall.
a. Determine the position and velocity functions for the coins.
b. Determine the average velocity on the interval [1,2].
c. Find the instantaneous velocities when $t=1$ and $t=2$.
d. Find the time required for the coin to reach ground level.
e. Find the velocity of the coin at impact.
94. A ball is thrown straight down from the top of a 220 foot building with an initial velocity of -22 feet per second. What is its velocity after 3 seconds? What is its velocity after falling 108 feet?

