2.1 The Derivative and the Tangent Line Problem

Find the slope of the tangent line to the graph of the function at the given point.

6. $f(x) = \frac{3}{2}x + 1$, (-2, -2) 8. $f(x) = 5 - x^2$, (2, 1) 10. $h(t) = t^2 + 3$, (-2, 7)

Find the derivative by the limit process.

12.
$$g(x) = -5$$

15. $h(x) = 3 + \frac{2}{3}x$
18. $f(x) = 1 - x^2$
21. $f(x) = \frac{1}{x - 1}$
24. $f(x) = \frac{4}{\sqrt{x}}$

Find an equation of the tangent line to the graph of f at the given point.

27.
$$f(x) = x^3$$
, (2,8)
30. $f(x) = \sqrt{x-1}$, (5,2)

Use the alternative form of the derivative to find the derivative at x=c (if it exists).

72.
$$g(x) = x(x-1), c = 1$$

76. $g(x) = \frac{1}{x}, c = 3$
78. $g(x) = (x+3)^{\frac{1}{3}}, c = -3$

Describe the x-values at which f is differentiable.

81.

84.

83.

Find the derivatives from the left and from the right at x=1 (if they exist). Is the function differentiable at x=1?

91.
$$f(x) = |x-1|$$

93. $f(x) = \begin{cases} (x-1)^3, & x \le 1 \\ (x-1)^2, & x > 1 \end{cases}$