Calculus

Lesson 1.4: Continuity and One-Sided Limits Mrs. Snow, Instructor

In mathematics the term, continuous, pretty much means the same as it has in everyday language. When a function f is continuous at $x=c$, it means that there is no interruption in the graph of f at c. The graph is smooth, that is there are no breaks, no holes, no jumps or gaps.

If a function f is not continuous at c, then f is said to have a discontinuity at c. Discontinuities fall into two categories: removable and nonremovable. In other words, can you remove the discontinuity or is it there no matter what.
Continuity of a Function: nonremovable-

$$
f(x)=\frac{1}{x}
$$

Domain: $\{x \mid x \in \mathbb{R}, x \neq 0\} \quad \therefore$ DISCONTINUOUS

F has a nonremovable discontinuity at $x=0$. In other words, there is no way to define $f(0)$ so as to make the function continuous at $x=0$.

removable-

$g(x)=\frac{x^{2}-1}{x-1}$
Domain: $\{x \mid x \in \mathbb{R}, x \neq 1\} \quad \therefore$ DISCONTINUOUS

At $x=1$, the function has a removable discontinuity. If $g(1)$ is defined as 2 , the "newly defined" function is continuous for all real numbers

One-Sided Limits

From precalculus we learned that to verify the limit of a function we have to look at the onesided limits:

Limit from right

Right sided limit: $\quad \lim _{x \rightarrow c^{+}} f(x)=L$

Find the limit of $f(x)$ as x approaches -2 from the right.

$$
f(x)=\sqrt{4-x^{2}}
$$

so:
$\lim _{x \rightarrow 2^{+}} \sqrt{4-x^{2}}=0$

As x approaches -2 from the right y gets closer to 0

The Greatest Integer Function a.k.a. a step function
$\llbracket x \rrbracket=$ greatest integer n such that $n \leq x$
Find the limit of the greatest integer function as x approaches 0 from the left and the right.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}}[[x]]=-1 \\
& \lim _{x \rightarrow 0^{+}}[[x]]=0
\end{aligned}
$$

When the limit from the left is not equal to the limit from the right, the limit does not exist.

THEOREM 1.10 THE EXISTENCE OF A LIMIT

Let f be a function and let c and L be real numbers. The limit of $f(x)$ as x approaches c is L if and only if

$$
\lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{+}} f(x)=L .
$$

DEFINITION OF CONTINUITY ON A CLOSED INTERVAL

A function f is continuous on the closed interval $[a, b]$ if it is continuous on the open interval (a, b) and

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { and } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b)
$$

The function f is continuous from the right at a and continuous from the left at b (see Figure 1.31).

Continuous function on a closed interval

Properties of Continuity:

THEOREM 1.11 PROPERTIES OF CONTINUITY

If b is a real number and f and g are continuous at $x=c$, then the following functions are also continuous at c.

1. Scalar multiple: $b f$
2. Sum or difference: $f \pm g$
3. Product: $f g$
4. Quotient: $\frac{f}{g}, \quad$ if $g(c) \neq 0$

Applying Properties of Continuity
$f(x)=x+\sin x \quad f(x)=3 \tan x \quad f(x)=\frac{x^{2}+1}{\cos x}$

Hence, all are continuous.

THEOREM 1.12 CONTINUITY OF A COMPOSITE FUNCTION

If g is continuous at c and f is continuous at $g(c)$, then the composite function given by $(f \circ g)(x)=f(g(x))$ is continuous at c.

Testing for Continuity

$f(x)=\tan x$

The tangent graph has asymptotes at all odd multiples of $\frac{\pi}{2}$. So it is continuous at all other intervals. Thus, we can say that $f(x)=\tan x$ is continuous on the open intervals:

$$
\ldots,\left(-\frac{3 \pi}{2},-\frac{\pi}{2}\right),\left(-\frac{\pi}{2}, \frac{\pi}{2}\right),\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right), \ldots
$$

$$
g(x)= \begin{cases}\sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

$\operatorname{Sin}\left(\frac{1}{x}\right)$ is continuous everywhere except $x=0$. At $x=0$ the limit of $g(x)$ does not exist. So $g(x)$ is continuous on the intervals: $(-\infty, 0)$ and $(0, \infty)$

$$
h(x)= \begin{cases}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

This function is similar to the previous function except that the oscillations are
 damped by the factor x. So $h(x)$ is continuous on the entire real line.

THEOREM 1.13 INTERMEDIATE VALUE THEOREM If f is continuous on the closed interval $[a, b], f(a) \neq f(b)$, and k is any number between $f(a)$ and $f(b)$, then there is at least one number c in $[a, b]$ such that $f(c)=k$.

An Application of the Intermediate Value Theorem
Use the Intermediate Value Theorem to show that the following polynomial function has a zero in the interval $[0,1]$.
$f(x)=x^{3}+2 x-1$

