
Calculus 
Lesson  1.2-Finding Limits Graphically and Numerically  

1.3 Finding Limits Analytically 
Mrs. Snow, Instructor 

 
From precalculus, we found several methods to get an idea of the behavior of the graph of 𝑓 
near an undefined value of 𝑥:   

Estimating a Limit Numerically: 
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Finding a Limit 
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Limits That Fail to Exist: 

Behavior that differs from right to left: 
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Unbounded Behavior: 
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Oscillating Behavior: 
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1.3 Finding Limits Analytically 
We found that the limit of 𝑓(𝑥) as 𝑥 approaches 𝑐 does not depend on the value of 𝑓 at 𝑥 = 𝑐. 
It may happen, however that the limit is precisely 𝑓(𝑐).  In these cases, the limit may be 
evaluated by direct substitution:   
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The Limit of a Polynomial: 
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The direct substitution property is valid for all polynomial and rational functions with nonzero 
denominators: 

 

The Limit of a Rational Function 
2

1

2
lim

1x

x x

x→

+ +

+  
 
 

 
 



 

 
We see that the limits of many algebraic functions may be evaluated by direct substitution.  The 
six basic trigonometric functions also exhibit a desirable quantity:   
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A Strategy for Finding Limits 
We have reviewed several types of functions whose limits may be evaluated by direct 
substitution.  This knowledge and Theorem 1.7 may be used to develop a strategy for finding 
limits: 

 

Finding the limits of a Function: 
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Dividing Out Technique: 
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Rationalizing Technique: 
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A Limit Involving a Trigonometric Function: 
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