Calculus

Lesson 1.2-Finding Limits Graphically and Numerically
1.3 Finding Limits Analytically

Mrs. Snow, Instructor

T Gike Dushing
Fhings to the Gimits
$\frac{d}{d x} f(x)=\lim _{\Delta \rightarrow 0} \frac{f(x+\Delta)-f(x)}{\Delta}$
ClassicGeek.com

From precalculus, we found several methods to get an idea of the behavior of the graph of f near an undefined value of x :

Estimating a Limit Numerically:

$f(x)=\lim _{x \rightarrow 0} \frac{x}{\sqrt{x+1}-1}$

x	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01
$f(x)$							

Finding a Limit

$f(x)=\left\{\begin{array}{l}1, x \neq 2 \\ 0, x=2\end{array}\right.$
$\lim _{x \rightarrow 2} f(x)$

Limits That Fail to Exist:

Behavior that differs from right to left:
$\lim _{x \rightarrow 0} \frac{\|x\|}{x}$
Unbounded Behavior:
$\lim _{x \rightarrow 0} \frac{1}{x^{2}}$

Oscillating Behavior:

$$
\lim _{x \rightarrow 0} \sin \frac{1}{x}
$$

1.3 Finding Limits Analytically

We found that the limit of $f(x)$ as x approaches c does not depend on the value of f at $x=c$. It may happen, however that the limit is precisely $f(c)$. In these cases, the limit may be evaluated by direct substitution:

THEOREM 1.1 SOME BASIC LIMITS

Let b and c be real numbers and let n be a positive integer.

1. $\lim _{x \rightarrow c} b=b$
2. $\lim _{x \rightarrow c} x=c$
3. $\lim _{x \rightarrow c} x^{n}=c^{n}$
a. $\lim _{x \rightarrow 2} 3$
b. $\lim _{x \rightarrow-4} x$
c. $\lim _{x \rightarrow 2} x^{2}$

The direct substitution property is valid for all polynomial and rational functions with nonzero denominators:

THEOREM 1.3 LIMITS OF POLYNOMIAL AND RATIONAL FUNCTIONS

If p is a polynomial function and c is a real number, then

$$
\lim _{x \rightarrow c} p(x)=p(c) .
$$

If r is a rational function given by $r(x)=p(x) / q(x)$ and c is a real number such that $q(c) \neq 0$, then

$$
\lim _{x \rightarrow c} r(x)=r(c)=\frac{p(c)}{q(c)} .
$$

The Limit of a Rational Function

$$
\lim _{x \rightarrow 1} \frac{x^{2}+x+2}{x+1}
$$

THEOREM 1.4 THE LIMIT OF A FUNCTION INVOLVING A RADICAL

Let n be a positive integer. The following limit is valid for all c if n is odd, and is valid for $c>0$ if n is even.

$$
\lim _{x \rightarrow c} \sqrt[n]{x}=\sqrt[n]{c}
$$

THEOREM 1.5 THE LIMIT OF A COMPOSITE FUNCTION

If f and g are functions such that $\lim _{x \rightarrow c} g(x)=L$ and $\lim _{x \rightarrow L} f(x)=f(L)$, then $\lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)=f(L)$.

We see that the limits of many algebraic functions may be evaluated by direct substitution. The six basic trigonometric functions also exhibit a desirable quantity:

THEOREM 1.6 LIMITS OF TRIGONOMETRIC FUNCTIONS

Let c be a real number in the domain of the given trigonometric function.

1. $\lim _{x \rightarrow c} \sin x=\sin c$
2. $\lim _{x \rightarrow c} \cos x=\cos c$
3. $\lim _{x \rightarrow c} \tan x=\tan c$
4. $\lim _{x \rightarrow c} \cot x=\cot c$
5. $\lim _{x \rightarrow c} \sec x=\sec c$
6. $\lim _{x \rightarrow c} \csc x=\csc c$
$\lim _{x \rightarrow 0} \tan x \quad \lim _{x \rightarrow \pi} x \cos x \quad \lim _{x \rightarrow 0} \sin ^{2} x$

A Strategy for Finding Limits

We have reviewed several types of functions whose limits may be evaluated by direct substitution. This knowledge and Theorem 1.7 may be used to develop a strategy for finding limits:

THEOREM 1.7 FUNCTIONS THAT AGREE AT ALL BUT ONE POINT

Let c be a real number and let $f(x)=g(x)$ for all $x \neq c$ in an open interval containing c. If the limit of $g(x)$ as x approaches c exists, then the limit of $f(x)$ also exists and

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x) .
$$

Finding the limits of a Function:
$\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$

