Calculus
Lesson 1.2-Finding Limits Graphically and Numerically
1.3 Finding Limits Analytically
Mrs. Snow, Instructor
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From precalculus, we found several methods to get an idea of the behavior of the graph of f
near an undefined value of x:

Estimating a Limit Numerically:
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Finding a Limit
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Limits That Fail to Exist:
Behavior that differs from right to left:
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1.3 Finding Limits Analytically
We found that the limit of f(x) as x approaches ¢ does not depend on the value of f at x = c.
It may happen, however that the limit is precisely f(c). In these cases, the limit may be
evaluated by direct substitution:

THEOREM 1.1 SOME BASIC LIMITS

Let & and ¢ be real numbers and let n be a positive integer.

1. limb = b 2. limx =¢ 3. limx" = ¢
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THEOREM 1.2 PROPERTIES OF LIMITS

Let b and ¢ be real numbers, let n be a positive integer, and let f and g be
functions with the following limits.

lim flx) =L and limg(x) = K

L. Scalar multiple:  lim [bf(x)] = bL

2. Sum or difference: lim [f(x) + gx)] = L + K

3. Product: lim [ f(x)g(x)] = LK
. flx) L .
4. Quotient: im——- = —, provided K # 0
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5. Power: lim [flx)] =L

The Limit of a Polynomial:
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The direct substitution property is valid for all polynomial and rational functions with nonzero
denominators:

THEOREM 1.3 LIMITS OF POLYNOMIAL AND RATIONAL FUNCTIONS

If p is a polynomial function and c is a real number, then
lim p(x) = plc).

If r is a rational function given by r(x) = p(x)/¢(x) and ¢ is a real number
such that ¢(¢) # 0, then
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The Limit of a Rational Function
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THEOREM 1.4 THE LIMIT OF A FUNCTION INVOLVING A RADICAL

Let n be a positive integer. The following limit is valid for all ¢ if » is odd,
and is valid for ¢ > 0 if n is even.
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THEOREM 1.5 THE LIMIT OF A COMPOSITE FUNCTION

If fand g are functions such that lim g(x) = L and linl f(x) = f(L), then
A= X—

lim 1((0) = /{1im ¢(0)) = 1(0)
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We see that the limits of many algebraic functions may be evaluated by direct substitution. The
six basic trigonometric functions also exhibit a desirable quantity:

THEOREM 1.6 LIMITS OF TRIGONOMETRIC FUNCTIONS
Let ¢ be a real number in the domain of the given trigonometric function.
1. lim sinx = sin¢ 2. limcos x = cos ¢
x—=c x—=c
3. limtan x = tan ¢ 4. lim cotx = cotc
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5. lim sec x = secc¢ 6. lim ¢cscx = ¢sc ¢
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A Strategy for Finding Limits
We have reviewed several types of functions whose limits may be evaluated by direct

substitution. This knowledge and Theorem 1.7 may be used to develop a strategy for finding
limits:

THEOREM 1.7 FUNCTIONS THAT AGREE AT ALL BUT ONE POINT

Let ¢ be a real number and let f(x) = g(x) for all x # ¢ in an open interval
containing c. If the limit of g(x) as x approaches ¢ exists, then the limit of f(x)
also exists and

lim flx) = lim glx).

Finding the limits of a Function:
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Dividing Out Technique:
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Rationalizing Technique:
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THEOREM 1.9 TWO SPECIAL TRIGONOMETRIC LIMITS
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A Limit Involving a Trigonometric Function:
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