Calculus Lesson 1.2-Finding Limits Graphically and Numerically 1.3 Finding Limits Analytically Mrs. Snow, Instructor

I Like Pushing Things to the Limits $\frac{d}{dx}f(x) = \lim_{\Delta \to 0} \frac{f(x + \Delta) - f(x)}{\Delta}$ ClassicGeek.com

From precalculus, we found several methods to get an idea of the behavior of the graph of f near an undefined value of x:

Estimating a Limit Numerically:							
$f(x) = \lim_{x \to 0} \frac{x}{\sqrt{x+1} - 1}$							
x	-0.01	-0.001	-0.0001	0	0.0001	0.001	0.01
f(x)							
			I	1 1			
Finding a Limit							
f(x) =	$=\begin{cases} 1, \ x \neq 2\\ 0, x = 2 \end{cases}$						
$\lim_{x\to \infty}$	$n_2 f(x)$						

Limits That Fail to Exist:

1.3 Finding Limits Analytically

We found that the limit of f(x) as x approaches c does not depend on the value of f at x = c. It may happen, however that the limit is precisely f(c). In these cases, the limit may be evaluated by **direct substitution**:

THEOREM 1.1 SOME BASIC LIMITSLet b and c be real numbers and let n be a positive integer.1. $\lim_{x \to c} b = b$ 2. $\lim_{x \to c} x = c$ 3. $\lim_{x \to c} x^n = c^n$ a. $\lim_{x \to 2} 3$ b. $\lim_{x \to -4} x$ c. $\lim_{x \to 2} x^2$

THEOREM 1.2 PROPERTIES OF LIMITS

Let b and c be real numbers, let n be a positive integer, and let f and g be functions with the following limits.

 $\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = K$ 1. Scalar multiple: $\lim_{x \to c} [bf(x)] = bL$ 2. Sum or difference: $\lim_{x \to c} [f(x) \pm g(x)] = L \pm K$ 3. Product: $\lim_{x \to c} [f(x)g(x)] = LK$ 4. Quotient: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K}, \text{ provided } K \neq 0$ 5. Power: $\lim [f(x)]^n = L^n$

The Limit of a Polynomial:

 $\lim_{x\to 2} \left(4x^2 + 3\right)$

The **direct substitution** property is valid for all polynomial and rational functions with nonzero denominators:

THEOREM 1.3 LIMITS OF POLYNOMIAL AND RATIONAL FUNCTIONSIf p is a polynomial function and c is a real number, then $\lim_{x \to c} p(x) = p(c).$ If r is a rational function given by r(x) = p(x)/q(x) and c is a real numbersuch that $q(c) \neq 0$, then $\lim_{x \to c} r(x) = r(c) = \frac{p(c)}{q(c)}.$

The Limit of a Rational Function

$$\lim_{x \to 1} \frac{x^2 + x + 2}{x + 1}$$

THEOREM 1.4 THE LIMIT OF A FUNCTION INVOLVING A RADICAL

Let *n* be a positive integer. The following limit is valid for all *c* if *n* is odd, and is valid for c > 0 if *n* is even.

 $\lim_{x \to c} \sqrt[n]{x} = \sqrt[n]{c}$

THEOREM 1.5 THE LIMIT OF A COMPOSITE FUNCTION

If f and g are functions such that $\lim_{x\to c} g(x) = L$ and $\lim_{x\to L} f(x) = f(L)$, then

$$\lim_{x \to c} f(g(x)) = f\left(\lim_{x \to c} g(x)\right) = f(L).$$

We see that the limits of many algebraic functions may be evaluated by direct substitution. The six basic trigonometric functions also exhibit a desirable quantity:

A Strategy for Finding Limits

We have reviewed several types of functions whose limits may be evaluated by direct substitution. This knowledge and Theorem 1.7 may be used to develop a strategy for finding limits:

THEOREM 1.7 FUNCTIONS THAT AGREE AT ALL BUT ONE POINTLet c be a real number and let f(x) = g(x) for all $x \neq c$ in an open interval
containing c. If the limit of g(x) as x approaches c exists, then the limit of f(x)
also exists and $\lim_{x \to c} f(x) = \lim_{x \to c} g(x).$

Finding the limits of a Function:

$$\lim_{x\to 1}\frac{x^3-1}{x-1}$$

Dividing Out Technique:

$$\lim_{x \to 3} \frac{x^2 + x - 6}{x + 3}$$
Rationalizing Technique:

$$\lim_{x \to 0} \frac{\sqrt{x + 1 - 1}}{x}$$
THEOREM 1.9 TWO SPECIAL TRIGONOMETRIC LIMITS
1.
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
2.
$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$
A Limit Involving a Trigonometric Function:

$$\lim_{x \to 0} \frac{\tan x}{x}$$

$$\lim_{x \to 0} \frac{\sin 4x}{x}$$